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CHAPTER I

INTRODUCTION

I. GENERAL DESCRIPTION

The general subject of this dissertation is the problem of

nonlinear control of sampled-data systems. Only pulse-amplitude-

modulated systems are considered; the control signal u(t) being a

piecewise constant function of time, t, which is allowed to change

value only at periodic discrete instants of time T seconds apart_ T

is the sampling period. Such an input sequence is the output of a

zero-order sample-hold device. The control signal is limited in

magnitude by practical considerations. This type of control is known

as saturating amplitude control. An example of such a control signal

or sequence is given in Figure i.

The dynamic system (plant) which is to be controlled is actuated

by a controller. Figure 2 shows the configuration in block diagram

form. The controller provides a control sequence, of the form of

Figure I, which is to take the system from an arbitrary initial state

into (or close to) a desired state in a suitably prescribed manner.

The controller receives information on the state of the plant only at

discrete instants of time, T seconds apart. If the controller

generates the input sequence on the basis of the initial state only,

it will be called an open loop controller, and the corresponding input

i

I
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sequence an open loop control. If the input over the interval

kT _t < (k + I)T is computed from the state at time kT, k = 0, i, ...,

then the control will be called closed loop control or feedback

control.

II. THE PLANT

The plants discussed in this dissertation are described by

linear constant coefficient differential equations. The nonlinearity

(saturation) is included in restrictions on the controller. It is

assumed that the plant is controlled by a single input and that it is

completely controllable (I, 2, 3, 4, 5, 6) . Such a plant is commonly

described by its transfer function, Gp(S). Figure 3 shows the transfer

function representing the plant in block diagram form. The order of

the denominator polynomial, n, is the order of the plant; - _i and

-z. are respectively the poles and zeros of the plant The plant mayl

also be described by either a single n-th order differential equation

or by n first order differential equations (4, 5, 6),

dx i (t) n

d--_ = I aijxj(t) + di u(t),

j=l

i = i, 2, ...,n, (!-i)

where a.. and d. are constants. In matrix notation
12 i

_x(t) = A x(t) + d u(t) , (1-2)

Numbers in parentheses represent similarly numbered entries

in the "List of References."

!
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where (') denotes differentiation with respect to time. The vector

x(t) is an n-vector (an n x i matrix), d is a constant n x I matrix

and A is a constant n x n matrix. The vector x(t) defines a point in

n-dimensional Euclidean Space, _ , with Xl, ..., Xn, the members of

x, forming a basis or coordinate system for the space. For a given

control u(t) and initial point X(to) the solution, see Appendix A, of

Equation (1-2) describes a unique trajectory in _. Given X(to)

and u(t), x(to) is sufficient to describe the behaviour of the plant

for any time t > t . For this reason x(t) is called the state of theo

plant and _ is known as the state space. The elements of x (Xl,

..., Xn) are called the state variables of the plant (4, 5, 6).

When u(t) is a piecewise constant input

u(t) = u(k), k - IT 4t <kT , k = I, 2, ..., (1-3)

the state of the plant at the discrete intervals of time kT, k = 0,

i, ..., is described by the following difference equation, derived in

Appendix A:

_x(k + I) = G(T) _x(k) +h(T) u(k + i)

where for convenience x(kT) is written as x(k).

(1-4)

The matrix G(T) is

n x n and is known as the transition matrix and h(T) is n x 1 and is

called the forcing matrix. The plant is assumed to remain completely

controllable in discrete form, see Appendix A. The state trajectory,

moving under the influence of the control sequence u(k), k = I, 2, ...,

and the initial state _(0), are illustrated in Figure 4 for a second

order system.
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Figure 4. The state trajectory moving from _(0) to _(N) = 0

under the influence of the input sequence u(1), ..., u(N).
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III. _ REGULATOR PROBLEM

The object of the control sequence u(k), k = I, 2, ..., is to

force the state of the plant from some arbitrary initial state_(0) to

some desired final state in a suitable manner. For the regulator

considered in this dissertation, it may be assumed that the origin of

the state space is the desired final state. Upon reaching the origin

the state will remain there if no further control signals are applied.

Such a control is an example of deadbeat control (i, 7). The term

"deadbeat control" has replaced the older Z-transform terminology

"ripple-free error-free control" (8, 9, I0, ii, 12). The regulator

problem may be described in terms of three factors: the length of time

allowed for the regulatory process, the constraints on the process and

the specification of the performance (subject to the constraints).

These factors are discussed in turn.

The Time of Regulation

Let N be the total number of sampling periods allowed for the

regulation. That is, after NT seconds the state of the plant has been

forced from_(0) to_(N) and the regulation process is complete.

The Constraints

The desired final state is the origin of the state space;

x(N) = 0, and the control signal is limited in amplitude. Without

loss of generality the amplitude is limited so that

lu(k)l _ I, k = i, 2, ..., N.
I !

0-5)

I
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The Performance Specification

The performance is usually considered optimum when some suitable

cost function has been minimized. These cost functions are formulated

to represent some physical desideratum. For example it has become

customary to use the cost function

N

to represent the energy cons_ed by the control, and

N

k=l

to represent the fuel consumption. The main body of this dissertation

will be limited to these two cost functions.

The three factors, time, constraints and cost function, which

define the regulator problem cannot be specified independently. For

example, minimizing the cost functions E and F has meaning only if

some constraint like _(N) = 0 is adjoined, and then only if there is

more than one input sequence that can take _(0) to the origin. In

Appendix A it is shown that if lu(k) I _ i, only a finite region of

initial states, those in the set _N' can be bought to the origin in

N sampling periods or less. It will be assumed in formulating the

regulator problem that N is always large enough for there to be a

solution.

The regulator problems treated in this dissertation may be

formalized as follows.

I
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Minimum Energy Problem

Given _(0) in FN

N, such that

find the input sequence u(k), k = i, 2,

£(N) = O, [u(k)l _ 1, and E =

N

l[u_k,]2
k=-I

is minimized.

I0

eoe_

Minimum Fuel Problem

Given _(0) in

N, such that

xCN) = O,

_N find the input sequence u(k), k = i, 2, ...,

N

lu_l_, ao_ _-- Y.lu._l
k=l

is minimized.

IV. REVIEW OF THE REGULATOR PROBLEM

In order to place the particular problems chosen for discussion

in perspective a brief review of several allied problems is given.

The Deadbeat Regulator

The term deadbeat control means that the state of the plant is

forced to a desired state in a finite time, NT seconds, and remains

there for t > NT. If the desired state is the origin of _ then

for _(t) to equal zero for t ) NT, u(t) must equal zero for t > NT.

I
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This deadbeat condition, _(N) = 0, is shown in Appendix A to be

equivalent to the constraint

N

x(O) = _" r. u(j) , (i-8)

j=l

where the r. are the canonical vectors described in Appendix A. If
--j

the n x N matrix C is formed as

_:[_,r_,, _] (_

and u = col. [u(1), u(2), ..., u(N)], Equation (1-8) can be written as

c u = x(0) . O-10)

Equation (i-i0) is the condition that the control _ transfer _(0) to

the origin in N sampling periods (13, 14, 15).

The linear deadbeat regulator. If the range of u(t) is not

constrained by saturation the linear deadbeat problem is: Find

which minimizes a given cost function subject to C _ = _(0).

In time-optimal control it is desired to find the minimum N

such that C _ = _(0). If N < n there is no solution unless _(0)

happens to be a linear combination of the N canonical vectors _i' _2"

"''' _N" If N = n, C = R and for completely controllable plants the

inverse of R exisits, see Appendix A.

sequence (7) is given by

-i
u = R _(0) .

When N > n, there is an infinite number of control sequences

that satisfy Equation (i-i0). The cost function which is to be

The unique time-optimal control

(i-ii)
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one of these control sequences minimizes the energy cost functionp E,

while in some cases many of the allowable sequences may minimize the

fuel cost function.

The generalized energy cost function is u__ts_ (2, 16, 17, 18).

The transpose of a matrix is denoted by t. S is a positive definite

N x N matrix. This cost function is of importance because S can be

chosen to give a desired trajectory in the state space, and it is also

easy to handle mathematically. The generalized energy problem is:

t
minimize _ S _ subject to C _ = _(0). The unique solution is

_=s-i ct[c s"I ct ]-i _(0) (1-12)

and is developed in Chapter II. Bertram and Sarachik (16) solved

this problem by using variational methods• They did not present the

details. Kalman, Ho and Narendra (2) identified the problem with the

generalized inverse (19, 20). Revington and Hung (18) and more

recently, Yuji (21) reformulated and solved the problem using

elementary differential calculus. This method is given in Chapter II.

Cadzow (13) rediscovered Penrose's work (20), giving the solution

Equation (1-12) for the case with S the identity matrix.

The fuel cost function, Equation (I-7), has not recieved much

attention for discrete systems. Lee and Desoer (22) presented a

formal solution to the linear fuel problem:

N

minimize I Iu(k)l subject to C _= _(0).

k=l

!
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The cost function is, in am_athematical sense, unsatisfactory because,

as is shown in Chapter II, there may not be a unique solution to the

problem. However, the practical importance of the fuel cost function

requires that the problem be investigated.

The deadbeat regulator with saturation. In this case the range

of u(t) is restricted as in Equation (i-5). The set of all (initial)

states that can be brought to the origin in N or less sampling periods

with saturating amplitude control is called _N and is discussed in

Appendix A. Kalman (23) defined the set and considered its properties;

his work was extended by Desoer and Wing (14, 24, 25). Kurzweil (26)

shows several of these sets for second order systems.

The deadbeat regulator with saturation is: Given _(0) in F
N'

find a vector _ which minimizes a given cost function subject to

The time-optimal, minimum fuel and minimum energy problems are

considerably complicated by the addition of the saturation constraint.

As a solution to the time-optimal problem, Desoer and Wing in a

planned series of papers (14, 24, 25) presented a method of construct-

ing a switching surface which gives a feedback solution of practical

importance for low order plants with real poles. Their methods were

recently extended to cover state variable constraints (27). Ton (28)

presented an open loop solution which works well in some cases.

Torng (29) used linear programming concepts. Koepcke (30) used the

digital computor to store information on the optimal input sequences

so that real time feedback solutions could be obtained.

!
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Ho (31) considered the "solution space", an N-dimensional

Euclidean space with coordinates u(k), k = I, 2, ..., N. This space

is discussed briefly in Chapter III. With the input constraint, the

admissible control region is a hypercube centered on the origim. The

intersection of the hypercube with the (N-n)-dimensional hyperplane

C _ = _(0) gives the feasible set of controls, whose members are

control sequences that will take the initial state to the origin and

satisfy the saturation constraint. In this formulation the time

optimal problem consists of finding the smallest N such that there is

an intersection between the hyperplane and hypercube, and then choosing

one of the feasible controls. The minimum fuel and energy problems

consist in finding from among the feasible controls one that minimizes

the appropriate cost function. Viewing the problems in this light,

Ho suggested that the fuel and energy problems were already solved

since they were respectively simple linear and nonlinear programming

problems. Torng (29) subsequently formulated the fuel problem and

Kim (32) the energy problem in this manner. Such programming

techniques (29, 30, 33, 34), however, are somewhat sterile in that

they fail to give insight into the problems and intrinsically cannot

suggest improvements to existing hardware. Furthermore, they cannot

be used in a closed loop form with the present day requirements of

real time solutions. Of course some control problems are so complex

that general digital computer techniques must be utilized (35). The

computer can be used to great advantage after all other avenues have

been explored.

I
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The most recent work on the energy problem _o_ that of Stubberud

and Swiger (36) who attempted to solve the energy problem in the

solution space using intuition, functional analysis and set theory.

Unfortunately, their conclusions, as shown in Chapter III, are not true

in general.

Non-Deadbeat Control

This brief discussion of the regulator problem ought to mention

non-deadbeat regulation. By removing the constraint x(N) = 0; i.e,

linear constraints of the form of Equation (i-i0), and using cost

functions of the form

N

x__,xc_÷_ [uc_>]_
k=l

with P a non-zero positive semidefinite matrix and _ >_ 0, non-deadbeat

regulators have been investigated. Kalman and Koepcke (I, 17, 37) and

others (5, 38) treated the linear case and Deley and Franklin (39)

considered the case with input saturation. Both solutions used dynamic

programming, which is eminently suitable if N is large. If N is small,

in the order of n_ solutions in closed form are practical.

Perhaps the most interesting aspect of the non-deadbeat

regulator is that it is very closely related to the discrete estimation

problem (40, 41, 42).

(i.13)

!
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V. SUMMARY OF THE WORK

16

The object of the dissertation is to study the problem of

saturation in the minimum energy and minimum fuel deadbeat regulator,

and to provide where possible, practical implementation of the optimal

control in a feedback structure.

In Chapter II the theory of the linear energy and fuel problems

is developed and used to consider in detail first and second order

systems. Necessary and sufficient conditions for the uniqueness of

the fuel solution are discussed. Chapter III discusses saturation in

the minimum energy problem. It is shown that the open loop problem

reduces to finding which members of the control sequence equal the

saturation limit, _i. First order systems are solved completely as

are certain second order systems. Chapter IV considers the correspond-

systems are solved.

Chapter V gives suggestions as to how the optimal strategies

may be implemented practically, in both open and closed loop forms.

In certain cases very simple optimal and suboptimal strategies can be

realized.

Appendix A provides the necessary background material for the

dissertation and includes a discussion of the invariant vectors.

Appendix B gives the derivation of some of the results used in Chapter

III.

!
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CP=iPTER II

THE LINEAR ENERGY AND FUEL PROBLEMS

I. INTRODUCTION

Having fo_rmu!ated the minimum energy and minimum fuel problems

in the canonical vector space, the derivation of the minimum energy

equations is given. These equations are then extended to cover the

generalized energy cost function discussed in Chapter I. A geometric

approach to these equations results in a graphical method for estimating

the minimum energy input sequence, which is particularly useful for

second order systems.

While the minimum energy problem is solved by differential

calculus, the minimum fuel problem is approached by considering a set,

SN(f ) . An

before its general properties are presented. The optimum input sequence

for first order systems can be solved without the explicit use of this

set, but the general properties of the set do provide the comfort of

rigor for second and higher order systems. In discussing first and

second order systems, it is shown that the input sequence is not

necessarily unique. Theorem i gives the necessary and sufficient con-

ditioffs for the uniqueness of the minimum fuel input sequence. Second

order plant pole configurations, for which initial conditions occur with

non-unique sequences, are investigated.

17
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The chapter closes with a detailed example of both the minimum

energy and minimum fuel problem.

II. FORMULATION IN _-SPACE

The linear deadbeat regulator with minimum energy is equivalent

to the problem,

N 2 N

minimize E = i [u(j)] subject to I u(j)r. = x(0) .
--3

j=l j=l

(2-1)

The corresponding minimum fuel problem is,

minimize F =

N N

I [u(J)l subject to I

j=l j=l

u(j) rj = _x(o)

(2-2)

u = col.[u(1), u(2), ..., u(N)] ,

and the canonical vectors are arranged in matrix form as

c=[r.r. _ ]

If the input sequence is arranged as the N x i column vector, N > n,

(2-3)

(2-4)

where C is an n x N matrix, problems (2-1) and (2-2) become respectively:

t
minimize E = u u subject to C_ = _(0) ; (2-5)

N

>: lu<,l _bje_ to cu= x(O) . (2-6)
minimize F =

j=l

The transformation of these problems to the canonical vector

space, _ , can be considered in the following manner. Let C be

!
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partitioned as

where

Let u be partitioned into

b = col. [u(n + i), u(n + 2), ..., u(N)l
w L J

The deadbeat constraint, CH = _(0), becomes

=_+o_ .

Premultiplying Equation (2-13) by R"I, and defining

-i
= R x(O)_e

-1
H=R Q

gives

N

c = a+I_ = _" u(j) h.

j=l

_t
where the "invariant vectors" are

h. = R'I r.
--3 --3

j = I, 2, ..., N .

19

42-7)

42-8)

(2-9)

(Z-lO)

(2-11)

42-12)

(2-13)

(2-14)

(2-15)

42-16)

The h. vectors so defined are different from those used in

references i_ 18, 45 and 48.
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Thus, the nx(N - n) matrix H is composed of the last N n - _"

vectors (Appendix A) :

Equation (2-16) is the deadbeat constraint in

(2-17)

___-space. In

future the state space, _ , will be referred to only occasionally.

III. THE MINIMUM ENERGY PROBLEM

Problem (2-5) becomes,

t
minimize ' E = a a +btb subject to c = a + Hb . (2-18)

The solution is as follows:

t (2-19)E=aa+btb

: [_-_]_[_-_]÷_:_. _2-_o_
: c c - 2bJ Htc + b t I + HtH b . (2-21)

Taking the gradient of E with respect to b (5, page 45; 43, page 45)

gives

Vb E = 2[I + HtH]b - 2Htc_ .

Setting Vb E = 0 gives the condition for E to be a minimum.

the optimumS, b_°, is given by

(2-22)

Therefore,

[I + Httt]b__ ° = Htc - (2-23)

o
From Equations (2-16) and (2-23) with the optimal a given by a , there

results

b ° + HtHb ° = Hta ° + HtHb ° (2-24)

!
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Therefore, the condition for min_m,!m energy in the linear deadbeat

regulator is simply (15, page 8; 21, page 836)

21

b° = Hta ° . (2-25)
m

From Equation (2-16) and (2-25),

HH t]oa = c (2-26)
I+ J-- _

Since the system is completely controllable any n, and only n, of the

invariant vectors are linearly independent. This means that H is of

maximal rank. It follows that the n x n matrix in Equation (2-26) can

be inverted and is in fact positive definite (18, page 13). Then

-I

a = + c (2-27)

and from Equation (2-25),

b ° H t [i + HHt] "I= _c

Alternatively, from Equation (2-23),

(2-28)

-1

b ° = [I + HtH] Htco_ (2-29)

Greville (44) and Cadzow (13) obtained the solution to the same

problem in a different form which can readily be obtained from

Equations (2-27) and (2-28). Equation (2-27) gives, with Equation

-I

a° = [i + R'I O_Qt R -It ] R"I x(0) , (2-30)

-i

= [R'I(RRt + QQt)R'It] R "I x(0) ,

(2-7) ,

-1

= Rt [RR t + QQt ] x(0)

(2-31)

(2-32)

I



Equation (2-28) gives

b O = Qt R-It[Rat + QQt] "I x(0)

Qt [Rat + QQt] -I= x(0) .

22

Combining Equations (2-32) and (2-34) gives

, (2-33)

a[:oI[]Qt

(2-34)

(2-35)

ffi JR, Q]t [(R, Q)(R, Q)t] -1 x(0) , (2-36)

ct[cct] -1= x(O) . (2-37)

This solution is certainly more compact than the solution given

by Equations (2-27) and (2-28). However, the solution in _ -space

is much more useful because it is independent of the state space

coordinate system. Furthermore, Equation (2-25) allows very useful

geometric pictures to be used in considering both the linear and

saturating minimum energy problems.

The minimum cost, E°, in _-space is

Eo ot o t[ ] x(o) , (2-38)= u u = x(0) CCt -1

and in _ -space, is

o oE o = a a +_ =c I + _ = c a . (2-39)

The Generalized Energy Cost Function

Consider now the cost function _ts_, where S is an N x N

positive definite matrix. The solution given in Chapter I, Equation
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! (1-13), can be obtained from Equation (2-37) in a straightforward

23

I
manner.

It is always possible to obtain an invertible N x N matrix• D,

!

!

so that S may be written as

SfDtD •

giving

(2-40)

!

t
I
!

Define

t t Dtu S u = u D u . (2-41)

v ffi D u . (2-42)

The generalized energy problem, minimize _utSu_ subject to Cu_ = x(0) , is

t -1
therefore equivalent to the problem• minimize v v subject to CD v ffi

_(0). The solution to this latter problem is obtained from Equation

(2-37), and is

, (2-43)

I t

!

!

!

!

-I

v ° = (CD -1) [CD-I(cD-1) t] x(0)

Using Equations (2-40) and (2-42),

(2-44)

uo s-1 ct [cs-lct] "l= x(0) . (2 -45)

This is the solution to the generalized energy problem.

The cost function utSu is very practical. By a suitable choice

I
I

I

of S, factors such as the risetime and overshoot can be made to meet

practical specifications while maintaining the deadbeat response (18,

page i0). The dynamic programming approach (17), which has similar

advantages, is not deadbeat.

I



!

I

i

I
I

I

t
l
i
I
I

I

i
I

I
I

I

24

Geometric Interpretation and Solution of the Energy Problem

A graphical method (45) of finding the input seqneuce for a

given initial state _ will be described for second order systems. The

concepts are equally applicable to higher order systems.

The set of all initial states that give u°(j) = constant is seen

to be a hyperplane. The equation of the hyperplane may be found directly

from Equation (2-27) or Equation (2-28). If the lines u°(j) = 0 and

u°(j) = I are drawn in _ -space, the j-th control can be found for a

given initial state _ by linear interpolation or extrapolation. A

method of obtaining these lines without solving the equations directly

can be approached through the use of an auxiliary space, _-space.

Consider the n inputs u°(1), u°(2), ..., u°(n) as the coordinates

of an n-dimensional Euclidean space, _ -space. The transformation

n 0o

between _._ and _k_ is given by Equation (2-27),

a = I+ c .

t. o oFor second order systems (n = 2), h a = u (j), j = 1, 2, ..., N

are lines and are normal to the corresponding vector h.. For u(j) = 0
--3

the line passes through the origin. For u°(j) _ 0 the line moves in

the direction of +h. and conversely for u°(j)_. 0. When u°(j) = 1 the
--]

line intersects h._jat a distance i/_j_ from the origin, where

j = (_h_ hi)l/2 , (2-46)

is the length of h.. Figure 5 shows the configuration. After plotting
--3

these lines for j = i, 2, ..., N, the structure of the optimal control

sequence may be investigated.

I
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a 2 = u°(2)

h°

--3

h_ ea = 1
u] m

J _;a°=0

_h1 a_ = u°O)

\

Figure 5. The invariant vector h. in /_--space.
--3
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It remains to link the I_. /-_....es in to the initial states in

From Equation (2-27), or directly from Equation (2-16),

N

o_o _c = + = u°(j) hj (2-47)

j=l

By considering two convenient points on the line h t oa -- !, the

o b ocorresponding a and _ can be estimated. The corresponding c can be

O

constructed in _ by adding together the vectors u (j) hi.

In actual practice there is no need to draw two diagrams. The

lines in _ can be drawn directly in 6 by imagining that the coor-

dinates u°(1), ..._ u°(n) replace the coordinates Cl, ..., Cn. The

construction lines may be ignored once u°(j) = I has been drawn in _, .

This technique is of course practical for first and second order

systems only, but the principle holds for any n. The control sequence

can be estimated quite accurately if N is not too large, but even if

the technique cannot be used to obt4in the control sequence exactly, a

rough idea of the structure of the control can in itself be very useful.

The technique is used to advantage in Chapter III.

IV. THE MINIMUM FUEL PROBLEM

The minimum fuel problem, Problem (2-6), is

minimize F =

N N

I l_<=>i_ub_c_=oc= I u<_>_ <_>
j=l j=l

I
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Introductory Discussion

Since the fuel cost function F cannot be handled by conventional

differential calculus, the general properties of the minimum fuel

sequence are introduced by consideringa second order system with a

settling time of three sampling periods; i.e, n = 2 and N = 3. The

most important characteristics of the input sequence can be demonstrated

with the plant

1 (2-49)
Op(S) = _ •

8

Figure 6 shows the invariant vectors _I' _2" and _3 for this plant.

The characteristics of the input sequence will be examined by considera-

tion of three initial states.

i. Consider the initial state _ = _i" One possible input

sequence, satisfying the constraint in Problem (2-48), is clearly

u(l) = l, u(2) = 0, u(3) = 0, (2-50)

and the fuel cost is F = i. Is there another input sequence that

satisfies the constraint and costs less fuel? In an attempt to reduce

the cost, u(1) must be reduced. Suppose u(1) is reduced to 5:

0 _ _ _ i. Then since

3

I u(j) hj =_hI =_c ,

j=l

u(2) and u(3) must satisfy

hl(l - _) = u(m)h 2 + u(3)h 3 •

Therefore,

u(1) = _,

(2-51)

(2-52)

I
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Figure 6. The invariant vectors _r' _2 and _3 for the plant I/s 2.

28

cI

I



!

!

!
!
!

!
,II
!

!

(i - _) • (2-53)

29

which gives

u(2) = 2 - 2a, u(3) = -i + a . (2-54)

The fuel cost is therefore

_= luo_l+ I c_l + I_c3_l
ffi 3 - 2o_ . (2-55)

For I _ _ _ 0, F > i. This means that the input sequence• Equation

(2-50), is a unique optimum input sequence for _ = _i"

2. Consider next the initial state _ = _2" Possible input

sequences are seen to be

u(1) =0, u(2) ffi 1, u(3) = o,

I
II

II

1 1
u(1) =_, u(2) =0, u(3) =_,

I I I
u(1) =_, u(2) =_, u(3) =_,

3 I 3

u(1) =_, u(2)=_, u(3) =_,

and again F = i.

(2-56)

Letting u(2) = (/, 0 < _ < i in an attempt to find a

I sequence with less fuel consumption, the deadbeat constraint is,

_2 = u(1) _1 + _ _2 + u(3) _3 " (2-57)

I Therefore• on solving for u(1) and u(3),

I

I
I

and

1 _ (2-58)i _ u(3) = 2 2 "u(1) =_-_. , ---

1 _ i cg

F=7-7+7-7+_=1 . (2-59)

I
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Therefore F is independent of _, 0 _ _ _ i, and there is consequently

no way of obtaining an input sequence with F < I. The non-unique

minimum fuel solution is therefore

u(1) =---_-1 - O_ • u(2) ffi (_, u(3) __l - (Z • (2-60)

3. As a final example consider an initial state _ on the line

joining _I and -_h3. Such a state can be described by

= _i _i - _2 _3 " _I' _2 > 0 ' _I + _2 = i . (2-61)

One possible input sequence is

u(1) = _I " u(2) = -_2 ' u(3) = 0 , (2-62)

and F = I. Is it possible to find another input sequence giving a

smaller fuel cost? Let _, shown in Figure 6, page 28, be a typical

initial state given by Equation (2-61). Now consider states on the

dashed line joining _2 and -h3. With u(1) = 0, such states can be

taken to the origin with a minimum fuel cost F = I. Similarly, with

u(3) = 0, states lying on the dashed line joining hi and -_2 can be

taken to the origin with minimum fuel cost F = i. Now the initial state

_ may be represented by linearly combining either hi and _2' °r _2 and

_3' or _i and _3" or finally, _i" _2 and _3" Considering Figure 6,

page 28, the combination of _I and h2 would require a fuel host exceed-

ing F = i, since _ lies beyond the dashed line joining hl and -_2"

Similarly, since _ lies beyond the dashed line joining h2 and -h3 , the

second combination, _2 and h3 , would also require F > I. The third

combination gives the input sequence of Equation (2-62), which makes
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F = i. It therefore remains to see if any reduction in fuel cost can

be obtained if all three invariant vectors _I" h2 and %) are used to

represent c. Suppose u(2) is fixed at some value, (z. The representa-

tion of c is therefore

c - _h 2 = u(1) h 1 + u(3) h 3 . (2-63)

If _ = O, Equation (2-61) gives u(1) = _1 and u(2) = -_2' with F = 1.

If _ is increased from zero, c - _ h 2 moves from c along a straight

line at c and passing through -h3. Similarly if _ is decreased from

zero, c - a h 2 moves from c and passes through h I. With c given by

Equation (2-63) therefore, the fuel cost is never less than F = I + _51.

Therefore, the optimum input sequence, for an initial state on the line

joining --hI and -h3, is uniquely given by Equation (2-62).

The results on these initial states can be combined and extended.

Before proceeding, however, it is necessary to know what is meant by

a "cone." A cone is defined as follows (46, page 219): A cone is a

set of points with the following property: if c is in the set, so is

Bc for all _ >/ 0.

Consider the set of points, L(+_i, +_j) on the line joining +_ h i

to + -hi, i _ j. The dashed lines in Figure 7 show L(i,j), L(j,-i),

L(-i,-j) and L(-j,i) for a typical pair of invariant vectors h. and h..
--I --j

The cone "generated" by the set of points L_i, +_j) is defined to be

the set
/

c(+_i,+_j)= _izl_= L_,all _ >/0 and all c in L(+i, +J)).

(2-64)

I



l

I
I

I
I

I
I

I
l
l

I
I

I
I

l
I

I

c(j,-i)

c(-i

Figure 7.

c2

/

/

L(j,-i) /

/

/ 0

The cone C(+i,+j)

/

/

/

C(i, j)

/

/

/

L(-j, i)

C(-j,i)

generated by the line L(_i,_j).
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For example, the cone C(i,j) is the cross hatched region indicated in

Figure 7. Further_ note that, taken together, the four cones C(i,j),

C(j,-i), C(-i,-j) and C(-j,i) cover the entire _ -space.

Now consider the example again. The "smallest" convex set which

contains the points _fhl , _fh2, _fh3, where f _ 0 is called S3(f ) after

the notation of Lee and Desoer(22). The boundary of S3(f ) is called

_S3(f ). Figure 8 shows the set S3(f ) and its boundary _S3(f ). Figure

9 shows _ -space divided into six regions by the cones C(_i, _j), i,

j = i, 2, 3.

Although, for the sake of simplicity, the initial states discussed

above were assumed to lie on _$3(I), the characteristics of the optimal

input sequence when the initial state lies on _S3(f ) are identical

except that the input members are f times greater and F = f. Therefore,

when _ lies on _S3(f), the following observations can be made:

I. If _ is in C(1,2) or C(2,3), C(-I,-2) or C(-2,-3), the

optimal control sequence is not unique. If _ is in C(-3,1) or C(3,-I),

the optimal control sequence is unique.

2. The optimum fuel cost is F = f.

3. An optimum input sequence can always be found by using an

input sequence with only one or two non-zero members. For example, if

lies in C(i,_), i,j = El, _2, +__3, the input sequence can be obtained

by representing c as

e = _i _i + _2 _j' i,j = i, 2, 3 , (2-65)

with

I



I
I

I

I
I
I

I
l

I
I
I

I
I

I
l

I
I

Figure 8.

fh_

\

\

\

c2

\

f_h2

\ 0
\

\

\

f_h2

\

\

\

\

\

\
\

I

I

i

I
I

i

i

\ I
\
q

_s3(f)

f_hI

-%

The boundaries _$3(I) and _S3(f ) for the plant i/s 2.
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u(i) = _I' u(j) = _2' u(k) = 0, k _ i,j. (2-66)

If the state lies in a cone where the sequence is not unique, this rule

may not be the best choice because of practical considerations. The

shape of the trajectory or the ease of synthesizing the input sequence

will help to determine which sequence is to be chosen.

These results can be extended to n-th order systems with a

regulation time of N sampling periods. The minimum fuel input sequence

is obtained via consideration of the properties of the set SN(f ).

General Properties of SN(f)

SN(f) is defined as the set of all initial states that can be

taken to the origin in N sampling periods with a fuel consumption F _ f.

Then

SN(f) = ci_: u<_) _ u<_<_ <_0_
j=l j=l

The following properties of SN(f) are proved by Lee and Desoer (22).

I. For f real and positive and for any integer N, SN(f) is a

convex set, contains the origin as an interior point, and is sy_netic

with respect to the origin.

2. If %(f) is the set of 2N points fhj, -f_hj, j = i, 2, ..., N,

SN( _ is the convex hull (46, page 207) of CN(f ) . The convex hull of a

set of points is, intuitively, the smallest convex set containing the

points.
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3. Let _SN(f ) denote the boundary of SN(f ) .

f increase to f so that c is in _SN(f ). Then f

cost for the given _.

For a given _, let

is the minimum fuel

4. If c is in _SN(f), u(1), u(2), ,.., u(N) is an optimal input

sequence if and only if

N N

c= I u(j)hj , I u(j) = f

j=l j=l

(2-68)

5. Suppose Cl, c2, ..., --nC are distinct points on _SN(f ) and lie

on a common supporting hyperplane, _ . Let c be given by

n iI

k=l k=l

If uk(J), j = I, 2, ..., N are optimum for _k , k = I, 2, ..., n, then

n

uCj) = I _k uk(J)' j = i, 2, ..., N , (2-70)

k=l

are optimum for c.

These properties can be used to generate an optimum input sequence.

The method of synthesis in the general n-th order case will become

evident after consideration of first and second order systems.

First Order Systems

The optimum input sequence for first order systems can be obtained

without recourse to the properties of SN(f ). For the first order plant
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I
G (s) = , (2-71)
p s+),.

the invariant vectors are given by (Appendix A, Equation (A-49)),

h. = e (j'l))k T 42_72), j = l, 2, ...,
--J

which are scalars. The length of h. is therefore
--j

J = e(J-l)_kT • j = I, 2, .... 42-73)

For stable plants _ _ 0, and therefore, _j >_ _k for j > k. If

= 0, _I = _2 = "'" = i. Figure I0 shows the invariant vectors for

X>0.

The minimum fuel problem is to find what proportion, u(j), of

each invariant vector hi, j = I, 2, ..., N, should be taken so that

when they are added together, they reach c with the least cost F. In

the linear case there is no limit on the amount of each that may be

used. The solution is clearly to use only the longest available

invariant vector to reach the initial state. For a given N, N = i,

2, ..., if _> 0 the longest vector is _. If )_ = 0, all the vectors

are of unit length, and as long as all the u(j) are of the same sign,

it is immaterial how they are combined to reach c. If _ _ O, corre-

sponding to an unstable system, the first vector, h I = I is the longest

vector. The minimum fuel solutions are therefore:

i. _ > 0; the unique solution is

u(1) = u(2) = ... = u(N - I) = 0, u(N) = cJe (N-l)pkr. (2-74)

2. _ = 0; there is no unique solution. Possible solutions are
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2h 2 3 4 h3

The invariant vectors for the first order system of

_>0, shown vertically displaced for clarity.
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u(1) = ut2_ = t_,_ /N• j .co -----U%_1./ ----" C ,

u(j) = c for any one integer j in I, 2, ..., N .

3. _ _ 0; the unique solution is

u(1) --c, u(2) -- u(3) = ... -- 0 .

40

(2-75)

(2-76)

(2-77)

These results make good sense when it is noted that with X> O, the

state of the plant is moving into the origin of its own accord, and the

longer it is allowed to do so, the less the cost of completing the

regulation. With _( 0, the free motion of the plant is away from

the origin, so that the correcting force should be applied in_ediately.

In this case the minimum fuel solution is also the minimum time solution.

Except for the case _ = O, pure integration, the solution is unique.

Second Order Systems

The set SN(I ) is the convex hull of the set of 2N points hi,

j = i, 2, ..., N (see page 36). In general therefore, not all of-h,

--j'

the points _ _j, j = i, 2, ..., N, will lie on _SN(1), the boundary of

SN(I ) . It is necessary to distinguish between the invariant vectors

that lie on _SN(I ) and those that lie in the interior of SN(I ). There-

fore, let K denote the set of all distinct integers k such that _ lies

on _SN(I ) . Denote by p the number of members ofK; there are therefore

N - p invariant vectors in the interior of SN(I ).

Let the 2p distinct line segments, Ls_i , _j), i, j in K, which

together form the boundary of SN(1), generate the corresponding 2p

cones Cs(_i , _j). These cones cover the entire _ -space. Figure Ii

shows these cones for a typical second order system with N = 5. The

vectors _i and _2 are shown interior to $5(I ) and, therefore, p = 3.
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Figure ii. The cones Cs(_i,!j) for a typical second order system.
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Without loss of generality, it may be assumed, for notational

convenience, that K contains the integers i, 2, 3 and 4, and that _i ,

(I, 2) C (2, 3) and C (3, 4) as_2" _3 and _4 form adjacent cones C s ' s s

shown in Figure 12. Furthermore, suppose that the initial state c lies

in _SN(f ) in the cone C s(2, 3). Then _c can be represented as

c = _I Cl + _2 c2 ' _I' _2 _ 0 , _I + _2 = i , (2-78)

where

c I = f__h2 • c 2 = fh__3 • (2-79)

From Equation (2-68), optimum input sequences for the initial states

_I and _2 are seen to be, respectively,

UlO) = f _2j " j = I, 2, ..., N ,

u2(J) = f g3j " j = 1, 2, ..., N ,

where _ .. is the Kronecker delta,
l]

(2-80)

(2-81)

(2-82)

Therefore, from Equation (2-69),

u(1) = 0, u(2) = f _i' u(3) : f _2" u(4) = O, ..., u(N) = 0

(2-83)

is an optimum input sequence for the initial state _ given by Equation

(2-78).

More generally, if _ is in the cone Cs_i , _j), i,j in K, and is

represented by
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= Pl_i + _2 _j '

the minimum fuel input sequence is

u(i) = _i ' u(j) = _2 ' u(k) = 0 ,
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(2-84)

k _ i,j . (2-85)

The uniqueness of the input sequence is considered next. As

shown in Figure 12, page 43, let _I be the line through and %2'

_ 2 be the line through f_.h2 and %, and _3 be the line through fh_3

and f_4" Without loss of generality, as before let _c lie in the cone

Cs(2 , 3). Then the uniqueness of the optimum input sequence is given

in the following theorem:

• (2, 3), the minimumTheorem 1 For second order systems, with _ in C s

fuel input sequence is unique if, and only if,

Proof•

(2-86)

Then c can be reached with minimum cost

by using, in Equation (2-84), _3 and h2 or _3 and hi. Suppose _ 2 =

_3" Here _ can be reached with minimum cost by using either _3 and

_2 °r _4 and _2 in Equation (2-84). Therefore, necessity is proved.

Consider _ = _I = f--h2" Equation (2-80) gives an optimum input

sequence u(2) = f, u(j) = 0, j = I, 3, ..., N. This is the unique

optimum control, since if u(2) is less than f, and _2 _ _i" _ can

only be reached by using additional invariant vectors, which gives a

total fuel consumption greater than f. Similarly if _ = _2 = f--h3"the

optimum control sequence u(3) = f, u(j) = 0, j = i, 2, 4, ..., N, is

unique if _ 2 _ _3" If _ is given by Equation (2-78), the optimum

input sequence of Equation (2-83) is unique if _ i _ _2 _ _3" since
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any other sequence gives a fuel cost greater than f (compare the intro-

ductory discussion on the minimum fuel problem). Thus sufficiency has

been demonstrated.

Although the Theorem as stated is only concerned with uniqueness

for second order systems, the extension of the Theorem to higher order

systems is conceptually clear. In general _SN(f ) is a polygon in n-

dimensional _ -space. Each face of the polygon has corners at the

points _f___, k in K. The initial state _, in _SN(f), lies in one of

these faces. Let this face be contained entirely in some hyperplane;

i.e., any point in the face lies in the hyperplane, then the input

sequence is unique if and only if no adjacent face is also contained

entirely in the hyperplance.

The Theorem has immediate use. The synthesis of the control may

be made easier by choosing one particular sequence from the alternative

input sequences, and it may be that some additional performance criterion,

such as time or energy, can be minimized to advantage. It is, therefore,

of interest to know what plant pole arrangements give non-uniqueness.

Second order systems are now examined to ascertain when non-

uniqueness can occur.

Pole combinations for a non-unique input sequence. If the poles

of a second order system are real, the invariant vectors, _j, h = 3,

4, ..., lie in the second quadrant of _ -space. With complex poles

they can lie in any quadrant (Table I, Appendix A, page 252). Real poles

will be discussed first, and then complex poles. Only stable systems

will be considered; unstable systems can be treated in the same manner.
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A. Real poles. Figure 13 shows the invariant vectors for a

typical second order plant of the form

= (s + _kl_(S + A2 ) ' _i' _2 _ O . (2-87)Gp(S)

If the plant has one or two integrations, it is easily shown that the

points _j, j = i, 2, ..., lie on the line c I + c2 = I. Figure 14 shows

the invariant vectors for the plant

G (s) i (2-88)
p =-'_" ;

S

Figure 15 shows them for the plant

i (2-89)
_(s} = s(s + _2)

The cross-hatched regions in Figures 14 and 15 are, therefore, the

regions for which the initial state has no unique optimum input.

If the plant does not have any integration; i.e., _I' _2 > 0,

initial states with non-unique fuel optimum input sequences can still

occur, although in a different manner. It can be shown that the slope

of the line _j+l " _j" j = i, 2, ..., becomes less negative as j increases:

see the dashed line connecting _I' _2' _3" _ and _5 in Figure 13.

However, uniqueness depends on the shape of the boundary of SN(f) ,

equivalently SN(I ). Consider N = 3. While the point _3 cannot lie on

the line c I + c 2 = I, the point -__h3 can, Figure 16 shows the arrange-

ment and the corresponding set of initial conditions with non-unique

input sequences. From Equation (A-50),
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Figure 15. The invariant vectors for the plant of Equation (2-89).
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• _i =_klT' _2 : _T; _i • _2 > 0.

(2-9o)

The condition for -_h3 to lie on cI + c2 = i is then

X 1 X2 ¥1 g2
e + e - e e + I = 0 . (2-91)

Figure 17 shows the solution to Equation (2-91) in graphical form. The

asymp¢otes e ffiI and e = i correspond to the cases where the plant

has an integration.

!

If Equation (2-91) is satisfied by the plant and N > 3, the

solution will always be unique since the _j, j = 4, 5, ..., for such a

plant cannot lie on c I + c 2 = I, and _i will no longer lie on _SN(1).

I

I

l

Figure 18 illustrates this for N = 4.

In general• for a given N, non-uniqueness for second order plants

given by Equation (2-87) occurs if -_ lies on the line cI + c2 = i.

The condition for -_ to lie on cI + c2 = 12 N = 3, 4, ..., is obtained

with the help of Equations _%-52) and (A-53). The plant poles must be

!

!

such that, for N = 3, 4, ...,

N-2 N-3

I + I e(N'2"i)_2+i_l - I

i=0 i=0

(N-2-i) X 2+(i+I) X 1
e = 0.

I

I
When "_i = _2 = _' Equation (2-92) reduces to

(N - 2)e (N-I)_ - (N - I)(N-2)_ -i = 0• N = 3, 4, ...

(2-92)

.(2-93)
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Figure 17. Graphical solution to the non-uniqueness of Equation
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Figure 18. An example of the case when only three of the

invariant vectors lie on the line c I + c 2 = i.

53

I



I
l

I
l

I

I
l
I

I
I
I

I
I
I

I

I

54

When N = 3, the value of _ > 0 which satisfies Equation (2-93) is

= log.e(l + _-_). As N increases the corresponding _ decreases in

a strictly monotonic manner.

B. Complex poles. With _ and 6 real, let

X1 X2
e = _+ J6, e = _ - J6 • (2-94)

From Equation (2-91), the condition for +_.h_3 to lie on c I + c2 = 1 is

then

2 62a + - 2_+_ 1 = 0 . (2-95)

Therefore, +_ h 3 lies on c I + c2 = i when

(_ - 1)2+ 62 = 0 , (2-96)

and - h 3 lies on c I + c2 = 1 when

(_- 1) 2 + 62 = 2 . (2-97)

Since _ and 6 are real, Equation (2-96) has no solution. The non-

uniqueness, therefore, occurs when Equation (2-97) is satisfied by the

plant poles. The semi-circle of Figure 19 shows the permissible values

of (% and 6 that do satisfy Equation (2-97).

If N > 3, the problem of finding pole locations which give non-

uniqueness is complicated by the fact that the invariant vectors can lie

in any of the four quadrants of _ -space. However, second order plants

can always be checked for uniqueness by actually drawing the set SN(I )

for the given plant poles.
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the case N = 3.

55

I



I

I

I
I
I

I
I

I
I
I

I
I

I
I

I
I

I

V. EXAMPLES

56

Two simple examples will now be discussed in order to show how

the minimum fuel and energy theory may be applied in practice.

Consider a trolley of unit mass rolling on rails, propelled by

either a battery driven d°co motor or by gas jets. At time t = O, the

position and velocity of the trolley are given as Xl(0 ) and x2(0 )

respectively. The trolley is to be brought to rest in no more than four

seconds; i.e., Xl(4 ) = x2(4) = 0o

The driving force (torque) at the driven wheels is directly

proportional to the current supplied by the battery; the energy supplied

by the battery is proportional to the square of the current. With the

jet propelled system, ejecting gas at a fixed nozzle velocity, the

driving force is proportional to the rate at which mass is ejected. In

the case of the battery driven trolley, the least energy is to be used

in bringing the trolley to rest. With the jet-propelled trolley, the

gas consumption is to be minimized.

The differential equation describing the motion of the trolley

is

d2x 1

dt 2 = u(t)
, (2-98)

where, in the battery powered case u(t), the driving force, is propor-

tional to the current, and in the jet powered case, u(t) is proportional

the the rate of mass (gas) ejected.

I



I

I

l
I
I

I
I

I
I
I

I
I

I
I

I
I

I

57

The energy supplied by the battery is proportional to

4

uZ(t) dt

0

(2-99)

and the mass of gas expelled is proportional to

4

/loct_ldt
0

(2-100)

The control, u(t), is required to be the output of a sample-hold

device, with a sampling period of T seconds. The vector difference

equation describing, at each sampling period, the motion of the trolley

under the influence of piecewise constant inputs is therefore, (see

Appendix A)

2(k+ i

F T2

xz(kI + T-

x2(k _ T

u(k) . (2-1Ol)

The position and velocity of the trolley at the k-th sampling instant

are respectively Xl(k ) and x2(k ).

Equation (A-19), are

The canonical vectors, defined by

r. ffi , j = I, 2, ...,
--]

-T

so that, from Equation (2-8),

R

(2-io21

(2-i03)
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Let the sampling period be T = i, and let the given initial state be

x(0) = . (2-104)

-2

Figure 20 shows the relationship between the canonical vectors and

_(0) in the state space. Only the first four canonical vectors are

needed, since with T = I, N = 4. The dashed line in Figure 20 shows how

the trolley would move if no control forces were applied. Equation

(2-14) transforms the initial state _(0) into _ -space, giving

i

C _ (2-i05)
i

Figure 21 shows c and the first four invariant vectors in _ -space.

Minimum Energy Example

The optimum input sequence can be obtained by using either the

graphical technique described earlier in this chapter, or the minimum

energy equations_ Equations (2-27) and (2-25). The graphical method is

used first.

Figure 22 shows, in _-space, the lines ht. a° _ o
--3 = I, h a = 0

for j = i, 2, 3 and 4. The line u°(1) = i in _ -space is found by

transforming graphically the points A and B from _ into 6 . Other

t o
points on h I a = 1 could be used; however, A and B are perhaps the

most convenient. Figure 23 shows, by means of the dashed construction

lines, how the points A' and B' are generated from A and B. For example,

B' is found by adding bf(a + b) _h3 to the point B (a and b are shown in
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x 2

I
i 0 I I I

I

I

I
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I

I

I

I

I
I

4 xI

Figure 20. The canonical vectors and the initial state x(0) for
the plant of Equation (2-98).
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Figure 21. The invariant vectors and the initial state c for

the plant of Equation (2-98).
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u°(2)

h 2

I B

I

I

I

I

I

I

u°(B) = 1

u°(4) =

h I

0 i

u°(1) = i

I Figure 22. The lines u°(j) = I, j = i, 2, 3, 4 and u°(j) = 0,

j = 3, 4 in _ -space for the plant of Equation (2-98).
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Figure 23. The generation of the lines u°(j) = i in

for the plant of Equation (2-98).
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Figure 22, page 61). Figure 22, in fact, is not actually needed for the

generation of the lines u°(j) = I in _ -space: as mentioned earlier,

the coordinates of _ -space can serve the dual purpose of supporting

both k-space and _ -space.

The lines u°(2) = I, u°(3) = I and u°(4) = 1 are obtained in a

similar fashion and are also shown in Figure 23. Therefore, by inter-

polation and extrapolation, the optimum input sequence can be estimated.

The approximate input sequence is, therefore,

u°(1)-- i.I,_ u°(2) _- 0.68 , u°(3)_ 0.3-- , u°(4)_-- -0.i .

(2-106)

Equations (2-27) and (2-25) will now be used to calculate the

exact optimum input sequence.

H

From Equation (2-17), the matrix H is

(2-107)

and

(2-108)

Therefore, from Equation (2-27),

O
a = u°(1)

u°(2)

0.7

0.4

i

i

(2-109)

and from Equation (2-25),

I
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b 0 = u°(3)

u°(4)

I.i 0.3

LO.7_l L-O-ll

(2-110)

The graphical method compares quite well with the exact calculation.

The energy cost, from Equation (2-39), is

EO t o (2-111)= c a = 1.8 .

Minimum Fuel Example

Figure 24 shows the set S4(l ) . The minimum fuel input sequence

is not unique since _ lies in the cone Cs(l,2). The time optimum

minimum fuel input sequence is clearly obtained when _ is represented

by hl and h2:

u(1) = I, u(2) ffii, u(3) = O, u(4) = 0 . (2-112)

The other two possible input sequences are obtained when _ is represented

by either h I and h3, or by h I and _. The sequences are respectively;

u(1) = 1.5, u(2) = o,

u(1) = 5/3, u(2) = o,

The fuel cost is F = 2.

u(3) = 0.5, u(4) = O, (2-113)

u(3) = O, u(4) = 1/3. (2.n4)

In conclusion, Figure 25 shows the four trajectories in the

state space _ . Trajectory (a) is the minimum energy trajectory, and

trajectories (b), (c) and (d) are the three possible minimum fuel

trajectories.



I

I

I
I Cs Cs(2,3)

c2

I _
\ h-3

! \\
! \

\

| \
k o

k

i S4(l)

I

I

I

\
\
\

\

\

\

c

\

CS(I,2)

\

\

\

\
\

\
\

\ \
\
\\

I Figure 24. The set S4(l ) for the plant of Equation (2-98).
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I

1
!

2
x I

(d)

_x(0)

(a) Minimum energy trajectory, Equations (2-98) and (2-99)

(b) Minimum fuel trajectory from Equation (2-101)

(c) Minimum fuel trajectory from Equation (2-102)

(d) Minimum fuel trajectory from Equation (2-103)

Figure 25. Minimum energy and minimum fuel trajectories for the

trolley example.
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CHAPTER III

THE MINIMUM ENERGY PROBLEM WITH INPUT SATURATION

I. INTRODUCTION

The minimumenergy problem with input saturation is, in general,

very complex. In order to introduce someof the problems associated

with amplitude constrained inputs without confusing the issue with

complex notation, first order systems are discussed initially. The

discussion is largely intuitive, and leads to an algorithm for generating

the optimum constrained input sequence in an open loop manner.

In general, if the initial states lies sufficiently close to the

origin of _ -space, the problem is solved. However, there is a

substantital region of initial states for which one or more members of

the corresponding linear minimum energy input sequence exceeds the

saturation limits. By working in a partitioned correction space,

rather than the solution space, several properties of the optimum

constrained input sequence can be derived. It is shown that the

minimum energy problem with amplitude constrained control is equivalent

to finding which members of the input sequence are to be set equal to

the saturation limit. Theorems 2 and 3 are helpful in finding such

members.

While for first order systems the problem is solved, second

order systems are solved in general only if the plant has integration
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General results have not been obtained for

II. FIRST ORDER SYSTEMS

In Chapter II, the linear minimum fuel problem was approached

by first considering the properties of the optimum input sequence for

first order plants. With first order systems, the invariant vectors

lie on the real line, and it is for this reason that intuition may be

employed to advantage. First order plants, while of interest in them-

selves, can again be used to throw some light on the general problem

of optimum regulation with saturation.

•Suppose, for the moment, that the saturation constraint is

relaxed, For a first order system, with a pole at s = - _k, the

invariant vectors are scalars:

_hj+ I : e j'_" , j = O, 1, ..., (3-1)

where _ = _kT. Using Equation (3-i),

N-I

[__]_
j=O

where, with n = I, the n x N - n matrix H is defined in Equation (2-17).

The optimum input sequence, in the absence of the saturation constraint,

is then given by Equations (2-27) and (2-25):

N-I

u°(j + I) = e j_" _c e , j = 0, I, ..., N-l, (3-3)

k--0

I
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where _, again a scalar quantity, is the initial state in _ -space,

correspondin_ to the state _(0) in _-space, and is given by Equation

(2-14). Consider the properties of this input sequence: from Equation

(3-3),

!u°<1>!< !u°<2>l_. _lu°<_>I _>0 _34>

lu°<1>l> lu°<2>l..>Io°<_>I_0 . _35>
It is interesting to note that, for c _ 0, none of the members of the

minimum energy input sequence can equal zero, while in the minimum fuel

problem all but one of the input members were equal to zero (page 39).

The linear minimum energy and fuel problems are alike in that, for

> 0, the last member, u°(N), is the largest, and for _ < 0 the first

member• u°(1), is the largest. For a given N, Figure 26 shows how

u(j) increases linearly with _ for the three typical cases, _ > 0•

= 0 and _ < 0. There is no loss of generality in confining the

discussion to stable systems; i.e., _ _0. From Equation (3-3)• if

0 _<__< e"(N-I)¥

N-I

Y
j=0

e2J '_' • (3-6)

then 0_u°(N) < I. Therefore, for a given N• if _ satisfies Equation

(3-6), the optimum input sequence satisfies the saturation constraint.

It is convenient to define the set MN: for first order systems MN is

the set of all states _ _, where _ satisfies Equation (3-6). Thus, if

does not lie in MN, the optimum input sequence given by Equation (3-3)

has one or more members which exceed the saturation limits. In this
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b. _'=o

uo(j)

_I uo(.1)
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u°(3)
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case, the set IN provides the answer to the question: is there an

optimum input sequence which does satisfy the saturation Constraint?

71

Such a sequence does indeed exist, if and only if the initial state

lies in the set _N" The statement that c is in _N is a compact way

of saying that _ can be represented by

N

c= I u(j)h(j) ,

j=l

lu(j)l _ i, j = i, 2, ..., N, (3-7)

so that there is a solution, u(1), ..., u(N), to the deadbeat regulator

problem. For first order systems, the set _N is the set of all initial

states _ _, where

N-I

O<c < I eJ_ "

j=0

_f
For e ffi 2, Figure 27 shows R 3 and

o
u (2) and u°(3) as a function of c.

(3-8)

_3" Figure 27 also shows u°(1),

The following analogy is helpful

in appreciating why c must satisfy Equation (3-8) in order for there to

be a solution to the deadbeat regulator problem.

The vector u(j) h. can be imagined to be a telescoping rod_ which
--j

may be extended from zero length (B(j) ffi0) up to a maximum length, the

length of h. (u(j) = El) . The deadbeat regulator problem, the problem
--3

of representing _ in the form of Equation (3-7), can be considered as

follows: for a given N, N rods are available, each of which, for

_ 0, has a different maximum length. The end of one rod being fixed

at the origin of C -space, the rods are to be placed end to end so
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that their resultant combination reaches the given state c. If, having

used all the available rods at their maximum extensions, it is still

not possible to reach c, then there is no solution to the problem. In

order to bring c to the origin, either N must be increased (more rods

must be made available) or the saturation constraint must be made less

stringent (the maximum allowable length of the rods must be increased).

The set _N is simply the largest set of states that can be reached by

combining together the N rods; for example, Figure 82 in Appendix A,

page 244, illustrates how _3 is formed in this way for a second order

system.

Assuming c is not in _, but that N is large enough so that c

in iN, there remains the problem of finding what amplitude constrainedis

input sequence minimizes the energy, E. If c is not in _, it is of

interest to know how many of the members of the input sequence exceed

the saturation limit. From Equation (3-3), with _ > 0, if

N-I N-I

e"j_ e _ i _ e e , (3-9)

k=O k=-O

then u°(1), ..._ u°(j) do not exceed the saturation limits and

u°(j+l), ..., u°(N) do exceed the saturation limits.

Let the j-th member of the minimum energy amplitude constrained

input sequence be ue(j). It is postulated now, and verified later,

O
page 121, that, having calculated u (3) from Equation (3-3),

if [u°(j)l > i then ue(j) = sgn. u°(j) , (3-i0)

where

!
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74

In words, Equation (3-10) states, "If the j-th member of the unconstrained

optimum sequence exceeds the saturation constraint, the corresponding

member of the optimum constrained input sequence is set equal to the

saturation limit." The telescoping rod analogy can be used to show that

the postulate is intuitively reasonable, if _ is not in MN, Equation
i J

(3-4) shows that at least lu°(N)l > I. This is to be expected since

is the longest invariant vector; under the minimum energy criterion

(as under the minimum fuel criterion) _ would, therefore, be utilized

the most in reaching c__. Furthermore, when the inputs are constrained

in amplitude, lu(J)i _ i, it seems reasonable to expect that uP(N)

should be reduced as little as possible from u°(N); i.e., uP(N) = i.

The solutio_ space _31) gives an alternate method cf showing

that the postulate is correct, at least for N = 2. Figure 28 shows the

tw¢-dimensio:a! scl_tion space. Input sequences that satisfy the

saturation constraint are represented by points on or within the square

centered on the origin. Figure 28 also shows two circles centered on

the origin. Points on the circles represent input sequences with equal

energy cost: the larger the circle, the larger the cost. Input

sequences that take an initial state _ into the origin of C -space

must satisfy the deadbeat constraint s Equation (A-59), which, for N = 2

and n = i gives
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c I

u(2)

c2 = u(1) + e_ u(2)

u(1) + e_: U 0

u 2 /

/
e

u

o

_u1

/

/

0
u(1)

equi-energy

circles

Figure 28. The minimum energy problem for a first order system

in a two-dimensional solution space.
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c = u(1) h I + u(2) h 2 (3-12)

= u(1) + u(2) e . (3-13)

Equation (3-13) is a line in the solution space and points on the line

correspond to control sequences, u(1) and u(2), that can take c into

the origin of _ -space. _o such lines are shown in Figure 28, for

i

the initial states c I and c2, c2 > cI > 0. _e min_um energy points

O o

_i and _2' corresponding to cI and c2 respectively_ are the pcints, on

the appropriate lines, whose distances from the origin is the least.

o

Since _i lies in the square, the amplitude constraints are satisfied;

o

this corresponds to cI in M 2. _e solutions2 lies outside the squarej

with u°(2) > i. _e solution must obviously be moved from_ if the

saturation constraints are to be satisfied, and must lie on the inter-

section of the line and the square. _e solution with least cost

e
(consider the circles) clearly lies at u with ue(2) = i. While this

does not prove the postulate for N > 2, it does indicate that it is at

least reasonable.

An _en Loop Control Procedure

Assuming, therefore, that the postulate is correct, how can it

be used to find the optimum a_litude constrained input sequence? Be

basic philosophy of obtaining the input sequence from Equation (3-10)

is best illustrated by means of an exile.

1 _T
with e e

Gp,S) s + _ '

and let c = 14 and N = 4.

Consider the plant

= 2 , (3-14)

It is desired to find the minimum energy
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amplitude constrained sequence that takes _ = 14 into the origin in 4

sampling periods.

From Equation (3-1),

hi = i, h2 = 2,

Equation (3-3) gives

2j 14

u°(j + i) = 85

therefore,

u°(4) = 1.32,

h3 : 4, _ : 8 . (3-15)

, (3-16)

u°(3) = 0.66, u°(2) = 0.33, u°(1) = 0.16.

(3-17)

Since u°(4) > i, the postulate requires ue(4) = I, which in turn gives

£ = 14 = u(1) + 2u(_) + 4u(3) + 8 . (3-18)

The problem now starts again, but with _ = 6 and N : 3. Equation (3-3)

gives

u°(j + i) = 2j 6 (3-19)
21 '

therefore,

u°(3) : 1.14, u°(2) = 0.57, u°(1) = 0.28 . (3-20)

Setting ue(3) = I gives _ = 2 and N = 2, giving

u°(2) = 0.8, u°(1) = 0.4 . (3-21)

Neither of these exceeds the saturation limit, so the optimum input

sequence is,

ue(1) = 0.4, ue(2) = 0.8, ue(3) = I, ue(4) = i . (3-22)
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Figure 29 shows the steps which resulted in Equation (3-22). This

simple example has illustrated one general procedure, based on Equation

(3-10), that gives the optimum input sequence. This type of procedure

generates an open loop control; closed loop control is considered in

Chapter V.

III. HIGHER ORDER SYSTEMS

The concepts that have been discussed for first order systems

in many cases carry over directly to higher order systems. However,

even for second order systems, the concepts are less straightforward,

and only in certain cases is it possible to find a reasonably fast

method of generating the optimum input sequence• For example, Equation

(3-10) does no.__thold for all second order systems.

The Set MN

The optimum input sequence, without amplitude constraints, is

given by Equations (2-27) and (2-28). These equations are repeated

below for the general n-th order system:

o
a =

u°(1)

I •
! •

[uV(n)

I+ HH t] -i= e , (3-23)

b 0 =

u°(u+i.;

u°(_)

= H t a° (3-24)
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c. Step three

Figure 29. The generation of the constrained minimum energy

input sequence for a first order system with N = 4.
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where _ - _T_L,e u x _, - n matrix H, given by Equation (2-17) is

[_ _ _]
If the initial state c is sufficiently close to the origin of

(compare Equation (3-6)), none of the input members given by Equations

(3-23) and (3-24) will exceed the saturation limit. It is of interest

to investigate the set, _, of all such initial states, since, if _ is

in_, the minimum energy problem is solved without further ado by

Equations (3-23) and (3-24). A formal definition of _, more general

than that given for first order systems, is:

(3-26)

The set _N" Equation (A-60), can be written as

If, for a given settling time of N sampling periods, c is FN , solutions

to the deadbeat regulator problem exist. The problem of finding which

one minimizes the energy subject to the amplitude constraint is solved

if _ is in_, since the linear design equations, Equations (3-23) and

(3-24), give an input sequence which does not violate the saturation

constraint.
O

If c is not in _, the input sequence, u , will contain

at least one member that exceeds the saturation limits. The general

properties of _ are developed next. For the sake of clarity, the

discussion is limited to second order systems, but the extension to

higher order systems follows without difficulty. The set _ is most
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easily imagined as being formed from the lines u°(j) = +i, j = i, 2, ...,

N. As an example, Figure 30 shows the sets _3 and _ for the plant

I

Gp(S) -- --_ . (3-28)
S

Some properties of _ follow directly from Equation (3-26): MN is

convex and symmetric with respect to the origin and is a subset of _N"

Figure 31, showing MN and _N for N = 3 and N = 4 demonstrates a

further property of MN: MN+ I does not necessarily include all of the

states in M N. It can, however, be shown for stable and completely

controllable plants (compare the similar property of _N in Appendix

A, page 243), that as N--_oOthe set M N does include all states in

-space. Since N isa given quantity, however, the saturation

problem may not be circumvented by merely increasing N until _ lies in

N"

The set M N may be constructed either by calculating the equations

of the lines u°(j) = i, j = i, 2, ..., N, from Equations (3-23) and

(3-24) or by the graphical method described in Chapter II. The

graphical technique is most conveniently developed in terms of the

auxiliary set _.

The set LN. For second order systems, _°-space, discussed

O
in Chapter II, has coordinates u°(1) and u°(2), the members of _ .

o
Any point in _ corresponding to a particular _ , also specifies

bO from Equation (3-24). The line u°(j) = _i is the line

ht oa = +1 . (3-29)
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It will be recalled from Chapter II, that the line h t. oa = i is normal

to the vector hj, and intersects _hj at a distance I/ _j from the origin,

where {j. the length of hj, is given by

(3-30)

Given the invariant vector hi, it is, therefore, a straightforward

matter to construct the lines of Equation (3-29). Figure 32 shows, for

example, the lines u°(1) = _I, u°(2) = _I and u°(3) = _I for the plant

1/s 2. The set L3 is shown by the cross-hatched area. In general, the

O

set _ is the set of all _ such that

t a o
-I 4 hj_ _ I, j = 1, 2, ..., N . (3-31)

.Obtaining_ from%. While5, isdefinedin lO_spaceand
O

is in _ -space, they are closely related. Given a in _ (and

therefore also b °) all the members of the input sequence

la_o1 ¢"
o (3-32)=

both sat.isfy the saturation constraint and minimize the energy cost,

and if _ is in MN, the input sequence has these same properties. The

input sequenceand the initial state are related by

o Hboc = a + . (3-33)

o _° bOTherefore, given any point a in , the input vector is fixed,

t o
and can be estimated from the lines hi a = O, +_I; j = 3, 4, ..o, N.

The corresponding initial state c is given by Equation (3-33), or

|
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=°(2) = 1

_°(2)

h 2

u°(3) : I

u°(3) : -I

0-hl u (z)

L 3

u°(2) : -z

u°(1) : -i u°(1) = i

I

I t oFigure 32. The lines hj _a = u°(j) = +i,
plant i/s _.
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equivalently,

N

= I u°(J) _(J) - (3-34)

j=l

The set L N can be drawn directly in _ -space: while generating MN,

the coordinates of _ -space can serve the dual purpose of representing
jo

points in both _ and _ . This device has been discussed already

in Chapter II. Figure 33 shows how L3 is used to generate M 3. The

corners of LN are labelled A, B, C and D; corresponding points on MN

are labelled A' B' C' and D'

The Problem of Saturation

Having found the set MN and its size relative to FN , the likeli-

hood that _ lies in MN becomes evident, see for example Figures 30, page

82, and 31, page 83. However, just as for first order systems, the

question arises: for _ in _N' what is the optimum input sequence if

does not lie in MN? Unfortunately, there is no simple general

postulate, such as Equation (3-10), which can be used to obtain the

optimum constrained input sequence. Stubberud and Swiger (36) gave a

method which purported to indicate which members of the input sequence

satisfied

ue(j) = sgn. u°(j) . (3-35)

However, the method is based upon a theorem (36, page 405) which, as

will be shown later in this chapter, breaks down in certain cases. The

analogy, which proved useful for first order systems, and which might

I
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lead one to expect that Equation (3-35) is true for every j for which

lu°(J)i> l,j= I,2,, _ doesnot revealthesubtletiesofthe

saturation problem, even for second order systems. The results obtained

I
I

l

by Stubberud and Swiger were developed in the solution space. The

drawback is that if N >3, visualization of the problem becomes impossible;

even with N = 3 it is not easy. By equivalently partitioning the

solution space into two spaces, one n-dimensional, the other (N-n)-

dimensional, the saturation problem can be examined more readily.

I The Correction Space

I
I
I

Suppose, having calculated the unconstrained optimum input

O

sequence, _ , from Equations (3-23) and (3-24), it is found that one or

more of the members of u° violate the saturation constraint. Consider

o gthe effect of adding to _ an N x 1 correction vector _ .. There

results a new input sequence, u, given by

| u°
u=_ + S .

I

I
l
i

l

(3-36)

For _ to be considered as a candidate for the optimum constrained input

e

sequence, u , u must satisfy both Equation (i-i0),

C u = x(O) , (3-37)

and

]u(j)[ _ I, j = I, 2, ..., N •

Substituting Equation (3-38) into (3-37) gives

C u_° + C__ = x(0) ,

o

and since u = u already satisfies Equation (3-37), Equation (3-39)

(3-38)

(3-39)

I
I
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becomes

C__ =0 . (3-40)

Equation (3-36) gives

u(j) = u°(j) + _ (j) ,

_ere _ (j) is the j-th me_er of _ .

Equation (3-38), _ (j) must satisfy,

- 1 - u°(j) _< _ (j)..< 1 - u°(j) ,

(3-41)

In order that u(j) satisfy

j = i, 2, ..., N . (3-42)

Equations (3-40) and (3-42) are constraints that must be satisfied by

g o g
_ so that _ = _ + _ takes _(0) to the origin and satisfies the

saturation constraNto From these ailowable corrections, _ , wiI1 be

t
selected the one that gives E = u u a minimum value.

The energy taken by the control sequence _ is

t ot o 2uOtS _ t_E = u u =_u _u + _ + . (3-43)

With the use of Equation (2-37),

E = EO+ 2[ct(cct)'l x(0)]t __ + __ t__ . (3-44)

Therefore,

E - E ° = 2x(0)t(cc t)

and since C__ = 0,

E _ EO = Z_E = _t_
w

-i

(3 -46)

Equation (3-46) says that if a correction _ is added to the uncon-

O

strained minimum energy sequence, _ , the resulting input sequence, _,

requires an extra amount of energy, Z_E = _ t_ . If the members,

!
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_(j), j = i, 2, ..., N, of the correction vector are made the co-

ordinates of an N-dimensional correction space, the _ that satisfy

S °Equation (3-41) lie in an N-dimensional hypercube centered on _ = -u .

The constraint of Equation (3-40) is an (N-n)-dimensional hyperplane

through the origin of the correction space, Figure 34 shows the correc-

tion space for a first order system with N = 2; compare this with the

solution space in Figure 28, page 75. Note that Figure 34 shows no

intersection between the square and the line, and there is, therefore,

no solution to this amplitude constrained regulator problem; c does

not lie in _2" At this point there seems little advantage in the

correction space; visualization of the problem for N > 2 is again

difficult or impossible. However, by partitioning the correction vector

__ the problem can be visualized for N = 4 or even 5.

The Partitioned Solution Space

Let the correction vector _ be partitioned so that

o
where cz is an n-vector, corresponding to a correction to a , and _ is

an (N-n)-vector_ corresponding to a correction to b °_ : cz(j)= (j),
f,,

j = i, 2, ..., n_ and _(j-n) = _(j), j = n+l, ..., N are the components

of __ and _. Equation (3-40) becomes

Rcz+Q_--0 ,

which, on multiplying by R -1, gives

(3-48)

__+H_=0 , (3-49)

i
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and the energy correction, _E, is therefore

The minimum energy regulator with amplitude constrained input

sequence has been transformed to the problem: minimize

_E = _t[l + H t H]_

subject to

(3-51)

- i - u°(j) _< g(j) < 1 - u°(j) , j = I, 2, ..., n, (3-5Z)

- I - u°(n+j) _ fB(j) 4 1 - u°(n+j), j = i, 2, .•., N-n, (3-53)

and

H_= -S . (3-54)

Let O<-space be the n-dimensional space with coordinates

_(I), ..., _(n), and let _-space have coordinates _(I), ..., _(N-n).

The direct sum of R-space and _ -space is, of course, the correction

space• Denote by A the set of _ that satisfy Equation (3-52), and byn

BN_ n the set of _ that satisfy Equation (3-53). These sets are shown

in Figure 35 for a second order system (n = 2) with N = 4. The direct

sum of An and BN_ n is just the N-dimensional hypercube of __ that

satisfy Equation (3-42)•

Now, assuming N _4, by means of Equation (3-54), the set A
n

A

-space• Let this map of An be called A'.be transformed intocan
n

For second order systems, Equation (3-54) gives

h31

h32 h42 " " _2 L-c_(2)

L_(N-2)J

• (3-55)
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Equation (3-55) gives two hyperplanes in _-space.

i x N matrix pj, j = i, 2, ..., n, is defined as

_ =[_ _,"_ j, ..., _ _] ,

94

If in general the

(3-56)

the equations of the two hyperplanes, Equation (3-55), may be written

as

Pl_ +u(1) =0 ,

P2 _ + a(2) = 0

(3-57)

(3-58)

The row vectors pj, j = I, 2, ..., n, are simply the n rows of the

' is therefore the set of points, _, that arematrix H. The set A 2 ,

generated by Equations (3-58) and (3-59) for all __ in A 2.

The intersection of A'n and BN-n defines a set UN_ n. Corrections,

_, lying in UN_ n satisfy Equation (3-53); the corresponding _, given

by Equation (3-54), satisfy Equation (3-52). Therefore, any _ lying in

UN_ n is a possible choice to minimize the correction energy given by

Equation (3-51). Equation (3-51) describes L_E as a positive definite

quadratic form. In a two dimensional _-space, for a constant /hE,

Equation (3-51) in gneral describes an ellipse; in three dimensions

an ellipsoid, and so on.

Example. To illustrate how A' and the ellipsoid depend on then

matrix H, consider the second order plant,

i

GpkS)" = (s + a + jb)(s + a - jb) ' (3-59)

and allow a settling time of four sampling periods (n = 2, N = 4). The

invariant vectors, _j, j = 3, 4, for this plant are obtained from
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Table I, Appendix A, page 252:

le]  2e3cojh3 = • .._ = • (3-60)

L2eaTcos bT [e2aT(4 cos2bT - I

If a ffi3.465, b = 14.83 and the sampling period is chosen as T = 0.i,

these invariant vectors become,

[o'_3= , _=
.25

From Equation (3-25),

[

H = I
_2

L0.25

-0.5

-1.9375

i -0.5 ]

-I. 9375j

(3-61)

(3-62)

' From Equation (3-56),Consider the generation of the set A 2.

21 = [-2,-0.5] , p2 = [0.25,-1.93751 . (3-63)

o
For the moment assume a = O. Eq"a_ _0,._"= fq-[7_%__,I and tR-_8_v_ , are used to

construct the set A_) shown in Figure 36 as the dashed parallelogram.

!

Note that if a ° _ 0, the set A 2 would not he centered on the origin;

the case a ° = 0 corresponds to the unrealistic case of c = 0. Further-

I I I I -_more, as long as both u°(1) _ i and u°(2) _ i, the set A 2

contain the origin of _ -space. Now consider the shape of the ellipse.

The positive definite matrix in Equation (3-51) is

.515625 5.00390625

(3 -64)

The eigenvalues, eI and e2, of this matrix are

I
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|
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| ' f3Figure 36. The set A 2 in a two-dimensional -space.
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e I = 4.5167, =_2 = 5.5497 (3-65)

and the corresponding eigenvectors, _I and _2 respectively are

_1 = ' _2 = " (3-66)

1.058 0.945

The eigenvectors correspond to the major and minor axes of the ellipse;

the major axis lies along the eigenvector (_i) formed from the sma1_er

eigenvalue (el) , and the ratio of the length of the major axis to the

length of the minor axis is

As AR increases, the ellipse becomes larger.

corresponding to AR.I and A_.2, _E 2 > _E I.

(3-67)

Figure 37 shows ellipses

The set UN_ n. Having considered the special case of a second

order system in atwo dimensional _-space to illustrate the generation

' and the ellipse of Equation (3-51), it remains to consider theof A 2

set UN. n. Since the set BN. n is a convex set, and A'n is a convex set,

their intersection, the set UN.n, is a convex set. The faces of the

set UN. n in general consist of the faces of the hypercube BN. n and/or

the 2n hyperplanes

_j _ + _(j) = O, a(j) = 1 - u°(j), a(j) = -1 - u°(j), j = 1, ..., n.

(3-67)

If the initial state _c is not in _N' the sets A'n and BN. n are disjoint;

I
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i.e., they contain no points in common, and UN_ n is the null set. If

c is in _N' UN-n does contain at least one point. Any _ in UN_ n gives,

with Equations (3-47) and (3-54), a correction __ , which gives, from

Equation (3-36), in turn a control sequence _, satisfying the saturation

constraint and taking _ to the origin of _ -space. If the initial

state _ is in MN, clearly no correction is necessary; in this case,

UN_ n contains the origin of _-space. If the initial state is not in

MN, not all of the members of o lie within the saturation limits, and

g o
it becomes necessary to add a correction _ to _ . In this case, UN_ n

does not contain the origin of _ -space.

The minimum energy problem reformulated in _-space. The

minimum energy prob!emwith input saturation can now be considered in

the following manner. For a given settling time, N sampling periods,

and a given initial state _, ! in PN' the _o!ution to the minim_.

o
energy problem without input saturation is u , and is obtained from

Equations (3-23) and (3-24). If ]u°(j)[ .._ i, j = i, 2, ..., N, the

problem is solved. In such a case, UN_ n containing the origin of _-

space, no correction is necessary. If however, one or more of the

input members u°{j) exceeds the saturation limits, lu°(j)l > I, the

set UN_ n does not contain the origin, and a correction _ is, therefore,

o grequired. The energy required by the corrected sequence, u = u + ,

is, from Equation (3-46), given by E = E ° + Z_E. This energy is

minimized when Z_E is minimized. As _E increases, the (N-n)-dimensional

ellipsoidal surface of Equation (3-51) moves outward from the origin

!
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(compare Figure 37). The permissible correction, _, must lie in the

set UN_ n. Therefore, if Z_E is smoothly increased from Z_E = 0 until the

surface first touches the set UN_n, this first point of contact is the

minimum energy correction. Let this point be_ e. Then the solution

to the minimum energy problem with input saturation is

e o _ea = _ + (3-68)

where

_ = - ; (3-69)

and the minimum energy is

Ee = E° + • (3-70)

Of course, the problem still requires a numerical solution. The

problem of finding the point _e is, in genera!, not a trivial matter.

Before pursuing this problem any further, it is necessary to identify

the various faces of UN_ n.

In _-space let the (N-n)-dimensional hyperplane

_(j) = - u°(n + j) + I , j = I, 2, ..., N-n (3-71)

be denoted Wn+j, and let the (N-n)-dimensional hyperplane

_(j) = - u°(n + j) - i , j = i, 2, ..., N-n, (3-72)

be denoted W_(n+j). These hyperplanes form the hypercube BN_ n. The

boundaries of the set A' are the 2n hyperplanes given by Equation (3-67).
n

Let the (N-n)-dimensional hyperplane,
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£j _ - u°(j) + I = 0 , j = i, 2, ..., n , (3-73)

• denote the hyperplanebe denoted Wj, and let W_j

Rj _ - u°(j) - I = 0 , j = I, 2, .,., n . (3-74)

These 2N hyperplanes, Wj, W j, j = I, 2, ..., N, define the set UN. n.

Depending on the initial state _, not all the hyperplanes are necessarily

faces of UN. n.

General approaches to the problem of finding_ e. From Equations

(3-41) and (3-47), if _ lies in Wj, u(j) = i. Similarly, if _ lies in

W j, u(j) = -I. The optimum correction, _e, lying on the boundary of

UN.n, must lie in one or more of the hyperplanes Wj, W.j, j = I, 2, ...,

N. Therefore, the mlnim,_ energy problem amounts to finding which

e equal the saturation limit.members of the optimum input seRuence, _ ,

is an example, Figure 38 shows the sets B2• A_ and U 2 for a typical

!

second order system. The set A2 is shown by the dashed parallelogram,

!

and U 2 is the cross-hatched area. The boundaries of A 2 and B 2 are

labelled by their corresponding lines Wj, W.j, j = I, 2, 3, 4• and the

optimum correction, _e• is shown at the intersection of W 4 and W 2.

The general problem of finding_ e obviously depends on the shape

and position of the set UN. n relative to the surfaces of Equation (3-51),

and some general observations can be made. If none of the members of

uO u 0 0a°, (i)• (2)• ...• u (n), exceed the saturation limit, A'n contains

the origin of _ -space, and _e must lie on the boundary of BN_ n and not

in its interior. Therefore, at least one of the members of be ue(n+j)

I
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j = i, 2, ..., N-n, must be equal to the saturation limit. Similarly,

if none of the members, u°(n + I), ..., u°(N), of b ° exceeds the satura-

tion limit, BN. n contains the origin and _ e lies on at least one of the

e

Wj, W.j, j = i, 2, ..., n. Therefore, at least one u (j), j = I, 2, ...,

n, equals the saturation limit. If only one of the members of u° exceeds

the saturation limit, the following theorem is applicable.

Theorem 2. If _ is in _N but not in MN, and if only one _of the members,

O
let it be the j-th member, of _ exceeds the saturation limits, then

ue(j) = sgn. u°(j) . (3-75)

Proof. Since the origin of _-space is contained on or between the

pairs of hyperplanes Wi, W i , i = I, 2, ..., N, i _ j, and is no___t

contained on or between the pair W., W_j, _e must lie on W. or W ..J J -J

Consider Figure 39. If u°(j) > I, _e(j) =_uO(j) + i, and therefore,

from Equation (3-68), ue(j) = i. If u°(j)< -i, _e(j) =_uO(j) _ I and

e
u (j) = -i. Therefore, ue(j) is given by Equation (3-75) and the theorem

is proved.

Theorem 2 was proved by Stubberud and Swiger (36, page 405) in

the solution space. As mentioned earlier, it is felt that the reasoning

proof can be followed more easily in _-space. Theorem 2behind the

has immediate use. If, on following the step by step open loop control

o
scheme demonstrated earlier, not more than one member of u exceeds the

saturation limits at each step, Theorem 2 guarantees that the resulting

e
u is optimum.

Now suppose lu°(j)l > i for more than one integer j. Does

Equation (3-75) hold for more than one value of j? Figure 38, page 102,

!
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W
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b. u°(j) < -I

The two cases u°(j) > i, u°(j) < -I of Theorem 2.
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where u°(3) and u°(4) both exceed the saturation limit, shows immediately

that, in general, Equation (3-75) is not true for more than one value

of j, since !ue(3)l < I. Postulate I, based on the work of Stubberud

e
and Swiger (36), suggests a method for finding which members of u are

to he set equal to the saturation limit.

Let the points of tangency of the hyperellipsoid of Equation

(3-51) to the hyperplane Wj and W_j, j = i, 2, ..., N, be called _j and

__j respectively. Corresponding to these (N-n) x I vectors _j and _ _j

_r__.o_x__oc_or_g__. g o_. _ _,_oo_C_4_>_"
(3-47) as

j = , j = 1, 2, ..., N , (3-76)

[ _J
and

__j = , j = i, 2, ..., N . (3-77)

Let the set of integers j for whichlu°O)l> 1 he called J. For
notational simplicity assume, without loss of generality, that u°(1)> 1.

Then:

Postulate I. If, for all integers j in J,

u(1)= u°(1)+ _ +(I)>_1 whenu°(j)> 1

u(1)= u°(1)+ _ -(I)> l whenu°O) < -I
J

(3-78)

(3-79)

then it follows that ue(1) = I.
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The modification for the case u°(1) <-I is simply to replace

i by _ -I in Equations (3-78) and (3-79), and the result that follows

is that ue(1) = -i. Postulate I can be stated verbally: Suppose more

O

than one member of _ exceeds the saturation limit and, typically,

u°(1) > i. If the additional constraint

u(i) = sgn. u°(i), i in J , (3-80)

is adjoined to Equation (2-16) in the linear energy problem, Problem

(2-18), and a new u°(1) is recalculated for each separate i in J, then

ue(1) = +i if each u°(1) is still greater than unity. Figure 40 gives

an example, for a typical second order system with N = 4, where Postulate

i is valid: the first member, u°(1) and the last member, u°(4), both

exceed unity, and J consists of the integers I and 4. Then ue(1) = I

lies beyond W I giving u(1) = u°(1) + _(I) > I. Similarlysince

ue(4) = I, since _I lies beyond W,, giving u(4) = u°(4) + g _(4) > I.

For a different initial state _, Figure 41 gives another example where

Postulate i is valid. Here u°(3) < -i and u°(4) > i. The set J consists

of the integers 3 and 4. Then ue(4) = i since _ -3 lies beyond W4,

whereas ue(3) > -I since _4 lies inside W_3. From these examples it

might appear that Equations (3-78) and (3-79), or their equivalents

when u°(1) < -i, be postulated not only as sufficient conditions for

e

u (i) = I, but also as necessary conditions. That these are not

necessary conditions may be seen by considering Figure 42, which shows

u°(3)<-i and u°(4) > I. For the purposes of Postulate i u(4) =

u°(4) + _(4) > i, but u(3) = u°(3) + _ +4(3)>-i, however, it is

evident from Figure 42 that both ue(4) = i and ue(3) = -I.
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W1

W2

w_1 _(1)

\

-_ W 2

W1

W_3

Figure 40. First example where Postulate i is valid.

!



I
I

l

l
l
l

l
I
l

I
I

I

l
l

l

l

i

108

W_I

W_ 3

\

\

W. 3

4

_(1)

W2

Figure 41. Second example where Postulate 1 is valid.
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_(2)_

0
_(1)

Figure 42. An example showing that the conditions of Postulate i

are not necessary conditions.
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Having given two examples where Postulate i is correct, it is

equally possible to find examples where it is incorrect. Consider the

plant given by Equation (3-59). Let c be given as

-2.7125

corresponding to an initial state on the boundary of

minimum energy input sequence is

(3-81)

_, The linear

o [ ]u = col. -0.583, -0.5062, 1.04, 1.272 . (3-82)

Figure 43 shows the corresponding sets A_ and B 2. The set U 2 is a

single point, given by

-0.14

-0.272
(3-83)

Since U 2 is a single point, Equation (3-83) also gives _e and therefore,

o [ j__u = col. -i, -i, 0.3, i ! •

Postulate i would give the components ue(4) = i and ue(3) = I;

a _e at the intersection of W 3 and W 4.

taking the new initial state

C +

0.5

1.9375

(3-_4)

i.e.,

This would leave the task of

2

+ =

-0.25

into the origin to the remaining invariant vectors _I and _2"

fore, in this case Postulate I breaks down.

The set _ includes a substantial region of states in _N"

, (3-85)

There-

Similarly, it would be valuable to know the size of the region of initial

states for which Postulate i is valid. This extended region is
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-2

B2

!

-I

_(2)

W_1

i
W3

Iii

!

A 2

0

_(1)

_W_ 2

-2

Figure 43. ,The set U2 shows that Postulate I is not always valid.
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illustrated by means of an example, which leads directly to Theorem 3.

The example uses the second order plant of Equation (3-59),

I

Gp(S) = (s + 3.465 + j 14.83)(s + 3.465 - j 14.83) (3-86)

and the sampling period is again T ffii. Using the invariant vectors of

Equation (3-61), the sets P4 and M4 are generated and are shown in

Figure 44. The cross-hatched regions are regions where Theorem 2 applies,

and therefore, where Postulate I is valid. The regions of initial

o
states for which two members of u exceed the saturation limit are

labelled A, B, A and _ . Because of the symmetry, it is only necessary

to consider states in A and B. The initial state of Equation (3-81) is

in region A, so that, for at least one state _, the postulate is invalid.

The question to be discussed next is: how many other initial states in

A and B have optimum input sequences whose members cannot be obtained

way of stating Postulate i, is necessary before this question can be

answe red.

Let the point of tangency of the hyperellipsoid of Equation (3-51)

with the hyperplane _(j) = constant be called _.. If the hyperplane
J

is Wj, __j corresponds to _+_j of Equation (3-76), and if W_j, __j

corresponds to of Equation (3-77). It is shown in Appendix B,
--j

£N

Equation (B-46), that the i-th member of _--_jis given by

where

( = _i_ " Ti_
j.i) 1 - T (J),

3]

i, j = i, 2, ..., N, (3-87)

ij is the Kronecker delta, i - Tjj > 0 from Equation (B-53)

!
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u°(4) = -1__

u°(3) = I

/

c2

2 I
/

/

/

h-2 /
/

/

0

/

u_(4) = o

I

/

u°(3) = -i

--u°(4) = I

-- -- 0

Figure 44. The regions A, B, A and B where two members of _ ,

for the plant of Equation (3-86), exceed the saturation limit.
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Tij = u°(i, hj) , 43_88 )

where the notation u°(i, _j) refers to the i-th member, i = I, 2, ...,

N, of the linear minimum energy input sequence when the initial state

c is the invariant vector h., j = I, 2, N.

tangency to the hyperplane W. is desired then
J

_(j) = - u°(j) + 1 ,

if the point of

(3-89)

and if the point of tangency to the line W.j is desired, then

_(j) ffi- u°(j) - 1 . (3-90)

For the purposes of Postulatel, if u°(j)> i the point of tangency is

to be with the hyperplane Wj, and if u°(j) < -i the h>_erellipsoid is

to be tangential to the line W . (see Equations (3-78) and (3-79)).
-]

Equation 43-87) is to be given by

_(j) = sgn. u°(j) - u°(j) (3-91)

Postulate i, in its most general form, can therefore be restated as:

Postulate la. If i is in J, ue(i) = sgn. u°(i), if, for all j in J,

where

> i if u°(i) > i

u°(i) + _j(i)

-I if u°(i) < -i

_(j) in Equation (3-87) is given by Equation (3-91).

(3-92)

Having restated Postulate i in the more convenient form of

Postulate la, it is possible to continue the examination of regions A

!
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and B in Figure 44. When the initial state is in region A, u°(3) > i

and u°(4) > I. Postulate la states that ue(3) = I if

u°(3) - (T34/1 - T44) _ (4) _ 1 , (3-93)

where _(4) = I -u°(4) is a negative quantity and T34 = u°(3, h4 ) is,

as can be seen from Figure 44, a positive quantity. Further, from

Equation (B-53), 1 - T.. is always positive.

u°(3) - (T34/I - T44)

and ue(3) = I. Similarly,

Therefore,

(3-94)

is also negative, and

since T43 = T34 , see Equation (B-55), ue(4) = i.

gives, for all initial states in A,

ue(3) = ,et,,_,, %--,,, = i .

Now consider initial states in region B.

Thus, Postulate la

(3,95)

In this region u°(3) >1 and

-T34/I - T44 = -0. 10185 (3-96)

-T43/I - T33 = -0.10304 . (3-97)

Postulate la says that ue(3) = I if

u°(3) 0.10185[-1 - u°(4)] >/ i , 43-98)

and ue(4) = -i if

u°(4) [I - u°(3)] _ -i . 43-99)0.10304

Equations (3-98) and (3-99) give the three possible occurrences shown

in Figure 45: when the initial state is in region B, the postulate

gives either ue(3)< I, ue(4) = -I, or ue(3) = I, ue(4) = -I, or finally

i
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u°(4)

0

-i

I

m -2

I

I
I
I

I 2 u°(3)

ue(3) = i, ue(4)> -i_

t"

t,

I

I

I

ue(4) = -i, ue(3)<l

eu (3_ = 1. ue(&_ = -1

I Figure 45. The possible values of ue(3) and ue(4) for initial

states in region B of Figure 44, page 113, as given by Postulate la.

I

I

I



l

I
I

I
l

I
I

I
l
I
I

l
l

l
I

l

117

ue(3) = I, ue(4)>-l. The corresponding initial states c for which

these results apply are shown in Figure 46.

Regions A and B contain sub-regions of initial states for which

Postulate la is invalid. In region A, for example, it has been shown,

in Equation (3-95), that the postulate requires ue(3) = I. Setting

ue(3) = I leaves the invariant vectors hl , h2 and _ to represent the

new initial state,

=_'= s.- h3 - (3-1oo)

Therefore, if c' does not lie in the set , formed from hi, h 2 and

_3 as, see Figure 47,

_3 ' = (c'Jc' = u(1)hl+ u(2)h_2+ u(4)_; lu(j)l_l, j = 1,2,4_ ,
l

(3-io1)

then Postulate la is invalid, since it is impossible to take _' into

Lne origin with any input sequence satistying the saturation constraint.

e
For an initial state c in region B, setting u (4) = -I gives

c' = c+ _4 " (3-102)

If _' does not lie in the set _3'

j = 1,2,3.)

(3-i03)

see Figure 47, the postulate is also invalid, for the same reason.

Figure 47 also shows, by the cross-hatched areas, the subregions

of A, B, A- and B" for which Postulate la is invalid. In this example,

these regions are very small when compared with the size of _4"

|
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"" "- "- "" _ "-- u°(4) = -i

/ /
!

!
/ _°(3)= 1

c 2

, , , %
-3 -2 -I

Figure 46. The possible values of ue(3) and ue(4) for initial

states in region B, as given by Postulate la.
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I

c 2

I
I

I
I
I

I
I
I

I
! _3

I

I

/ /

0

4

h 1

I
I

I

]

iI

I
I

c 1

Figure 47. The subregions, shown cross-hatched, of regions A, B,

A and B for which Postulate la is invalid for the plant of Equation

(3-86) with N = 4.
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in general, the following theorem, proved in Appendix B, can be

of significant help in obtaining the sequence ue.

Theorem 3. Given an initial state _ in PN but not in _. For a given

J, calculate, from Equation (3-87), _j(i) for all j in
i in the set

J. Then

e

u (i) = sgn. u°(i) (3-104)

if, for all integers j in J,

> i if u°(i) > I
O

u°(i) + _(i)
.#

< -i if uO(i) < -I

where _j(i) is obtained from Equation (3-87) with

Equation (3-91), and

o:c [,_ouO(_].
--].

I -- -- M !

is in the set iN_l , where

• (3-1o5)

_(j) given by

| , £
I j=l

j_i

!

(3-106)

l
I

l

I

(3-I07)

This theorem is useful if it can be shown that c' is in -i"

way to find out if c' is in _Ni I is to actually go
The only general

through the step by step open loop control procedure discussed earlier.

If a sequence results which takes the initial state _ to the origin, it

is an optimum sequence. If, however, N having been reduced to n or less,

I
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it is found that _ cannot be represented with the remaining invariant

vectors then one or more members of the input sequence must have been

erroneously set equal to the saturation limit. There are several cases,

however, where Theorem 3 can be used to generate the optimum input

sequence.

First Order Systems

It can now be demonstrated that Equation (3-10) may be used to

generate an optimum sequence for first order systems. Without loss of

generality, consider stable first order systems with initial states

c_ > 0. It was shown, Equation (3-4), that if c is not in _, at least

o I Ithe last member of u exceeds the saturation limit, u°(N) > i. Then

_' = c - _ is certainly in _N if c is in _N Furthermore, all the

O

members of the input sequence u are positive and u°(i, hi) is always

Equation (3-10) results.

Second Order Systems

The only results of significant generality which have been

obtained for second order systems are for plants with real poles, at

least one of which corresponds to an integration, and for plants with

complex poles which have been " tuned" (47, page 95).

Second order plants with integration. Consider the stable second

order plant,
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i

Gp(S) = s(s + _ )
>_0, (3-108)

with invariant vectors, see Table I, Appendix A, page 252, given by

_h2+j = , j = 1, 2, 3, ...,
S(j) + 1

(3-i09)

where

e _T(e,J _T - 1) (3-no)
S(j) = AT

e - 1

For this plant, the set _ is bounded by the lines

u°(1) = ±x, u°(N) = ±I, (3-nl)

which can best he seen by considering the lines h_ oa = I, j = i, 2,
m] m

t o3, ..., shown in Figure 48. The lines a_O = ±i and _I _ = _i form

the boundary of the set _ in _°-space, and therefore, the lines of

=_,,_o. (3-111) are _ _ ...._.... 1_cz _ _ _ _'

Assuming that _ is in _N but not in _, one or more of the

members of u° will exceed the saturation limit. It will be shown that.

for a second order system with integration,

if lu°O)l > 1 , ue(j) = sgn. u°O) ; (3-112)

i.e., that Equation (3-10) is applicable to such systems. It must,

therefore, be shown that any initial state c in _N' but not in MN,

satisfies Equations (3-105) and (3-107). Consider the lines u°(j) = I,

j = I, 2, ..., N. All these lines pass through the point on the boundary

of _N given by

I
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u°(2)

u°(2) = I

u°(3) = 1 u°(4) = 1

u°(i)

u°(1) = 1

Figure 48.
t 0

The lines h_ a = u°(]) = 1 for the plant I/s(s + }k).
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N

c = I hj , (3-113)

j=l

and by symmetry the lines u°(j) =-I, j = i, 2, ..., N, pass through the

opposite corner of _N given by

N

__:.-y__. c_-_
j=l

This can readily be seen by considering the set _: for example, in

t o

Figure 47, page 119, the lines _j _ = I all pass through the point

o o U.a I = I, a 2 = l. The lines of Equation (3-11.1)partition into six

regions of interest, A, B, C, A', B" and C'. By symmetry, only the

regions A, B and Cneed be considered. These regions are given by

initial states lying in FN and having linear optimum input sequences,

O
u , that satisfy respectively,

u°Cl)>L I, u°(N) <-i, (3-i15)

O
u (N) _ I, u°(1) >-I, (3-i16)

u°(N)> i, u°(1) <-I. (3-117)

Figure 49 shows these regions for the plant

1 (3-ll8)
Gp(s) = ---f ,

S

with N = 4.

It is a straightforward, but tedious, matter to show that in

general B contains the lines u°(j) = i, j = N, N-l, ..., k, when

!



I

I

I

!1
I
i

I

I
I
I

I
I

I

I
I

I
I

0
u (i) =
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u°(1) = 1 u°(4)= 1
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I
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/
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cI

Figure 49. The regions A, B and C and their syn_etrical counter-
parts for the plant i/s2°
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S(k) i + S(i) + i > S(i) S(i) + i ,

i=l "=

(3-i19)

and that A contains the lines u°(j) = I, j = I, 2, ..., m, when

N--2 [ N-2I S(i)Is(i) + 11 - S(m) I+ I Is(i)

i=l i=l

I+ 1 S_i) + S(m) - S(j)

i=i i=l

+1

s(_-2)+ 1
> s(_-2)

(3-120)

In Equations (3-119) and (3-120), the equality holds when either

u°(k) = I or u°(m) = I lie on the boundary of _N" Figures 50 and 51

show howthese equations have been used to calculate, for different

values of N, which members of uI saturate when _ is in A or B. Figure

50 corresponds to the plant

1 (3-121)
Gp(S) =--f ,

S

and Figure 51 to the plant

I _T (3-122)
Gp(S) = s(s + _) ' e = 2 .

It can be shown that if u°(j) lies in A, j = I, 2, ..., m, u°(i, hi) > 0

for i,j in i, 2, ..., m. Similarly if u°(j) = i, j = N, N-l, ..., k,

lies in B, u°(i, hi)> 0 for i,j in N, M-i, ..., k. Further, _(j) as

given by Equation (3-91) is always negative for u°(j) = 1 in A or Bo

Therefore, if c lies in A or B,

u°(i) + _j(i) 71 1 (3-1237
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N

region A

' ' I

2 3 4 5 6 7

region B

I I I I _-

8 9 I0 II u°(j)

interior to the region

on the boundary of _N

Figure 50. The lines u°(j) = I falling in regions A and B as a

function of N, for the plant of Equation (3-121).
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N

region A

ii

i0

9

8

7

6

5

4

3

i 2 3

Figure 51.

region B

I I I I I I I I

4 5 6 7 8 9 i0 ii uO__.(j)

interior to the region

The lines u°(j) = i falling in regions A and B, as a

function of N, for the plant of Equation (3-122).
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It can also be

shown that Equation (3-i07) is satisfied. The conditions of Theorem 3

are, therefore, satisfied for any initial state in A or B. In region

C, _(J) is positive if u°(j) < -i, j = i, 2, ..., and is negative if

u°(j)> i, j ffiN, N-I, .... It can be shown that u°(i, hjl is negative

if _ is in region C and u°(i) < -i, u°(j) > i. Therefore,

u°(i) + _.(i) < -I if u°(i) < -I (3-124)
3

u°(j) + _i(j) > i if u°(j) > i . (3-125)

It can further be shown that Equation (3-107) is also satisfied if c

is in region C. It may, therefore, be concluded that, if _ is in A,

B orC (A--,B--=d C--),

if, for any i, luO(i)l > I, ue(i) = sgn. uO(i) . (3-126)

This result enables the optimum input sequence to be obtained by a step by

step procedure. For example, suppose, for the plant of Equation (3-1211,

that _ is in B and N is given as N = i0. It is possible, see Figure 50,

that u°(10) >i, u°(91 >i and u°(8) >i. Suppose all three do saturate.

Equation (3-1251 guarantees that ue(10) = ue(9) = ue(81 = i. Since

U7 o_' = _ - _I0 - _9 - _8 lies in , the sequence _ for the new initial

state _' with N = 7 may have u°(71 > 1 and u°(61 > i. Suppose that this

happensandgivesu°(n: u°(61= 1. Thestate_' -_6 -_7 nes in _.

Figure 50 shows that the input u°(51 may saturate, but that u°(41..< I.

Suppose ue(5) = I. The state _' - _ - _7 - _5 lies in _4 where u°(4)

may saturate. To terminate the procedure, suppose that u°(4)_< i.

Then the problem is solved, since this latest state must lie in M4. A

!
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method of closed loop control for plants with integration is considered

in Chapter V.

Second order plants with tuned complex poles. Consider the plant

1 (3-127)C,p(S) = (s+ a+ jb)(s+a - jb) '

with invariant vectors given by,

h--n+j=

-e
(j+l)aT sin _bT

sin bT

jaT sin(j + l)bT
sin bT

• j = l, 2, .... (3-128)

Nelson (47, page 95) observed that if bT is adjusted so that

m_

bT = _-- , m= i, 2, ..., (3-129)

the canonical vectors (and, therefore, the invariant vectors) become

mutually orthogonal. When the system satisfies Equation (3-129),

Nelson referred to the plant as being "tuned". Let

bZ = y , (3-130)

which may be accomplished by adjustment of either the sampling period

or b. Minor loop feedback might be used to modify b. With a tuned

plant, Equation (3-130) being satisfied, the invariant vectors become

[01le aTl_4-- =

_e 2aT

(3-131)

Figure 52 shows the invariant vectors for a stable plant with a > 0. If

!



131

c2

h 2

0

h_

-hl _ ci

Figure 52. The invariant vectors for a stable underdamped second
order plant with tuning.
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a = 0 the tuned system has all its invariant vectors of unit length, a

particularly simple configuration.

By using a method analogous to that used for plants with integra-

tion, it can be shown that Equation (3-126) is also valid for tuned

plants. Even though the orthogonality of the invariant vectors makes

this a simpler task than before, such considerations are not necessary.

Consider the initial state _ represented by the N invariant vectors _I'

_2" "''' _[q:

C _
D ci];

c 2 j=l

u(j) hj . (3-132)

This representation can be split into two parts,

N

Cl = I u(j) b_j ,

j=l

j odd ,

N

c2= I u(j) h 3 , j even

jffi2

From Equations (3-128) and (3-130), compare Figure 52,

(3-133)

(3-134)

N

c I = u(1) + I u(j)(-l) (j'l)/2 e (j'l)aT , j odd , (3-135)

j=3

N

c 2 = u(2) + 1 u(j)(-1) (j-2)/2 e (j'2)aT , j even . (3-136)

._ffi4

Equations (3-135) and (3-136) are very similar to two separate first

I
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order systems, one with an initial state c I and the other with an

initial state c2. Although there are no real first order plants which

could fit the form of Equations (3-135) and (3-136), it is clear from

either the intuitive arguments or Theorem 3, that Equation (3-136) is

valid for these two artifical first order systems and, therefore, for

the entire tuned system. Therefore, the step by step procedure can be

e

applied to generate the optimum sequence, _ , in an open loop manner.

Closed loop control is considered for tuned systems in Chapter V.

General Second and Hi_her Order Systems

Second order plants with integration and underdamped plants with

tuning by no means exhaust the class of second order systems. Plants

with two real non-zero poles or plants with untuned complex poles are

quite common. To date, there is no general way of guaranteeing that

Equation (3-126), or even the more comphrehensive Postulate la, will

e

generate the optimal sequence _ . However, for such second order

systems, and the general n-th order system, if, on using Postulate la

repeatedly, the initial state can be brought into the origin, then the

input sequence so generated is optimum. Furthermore, since, in the

example at least, the regions where Postulate la is not valid are so

small, see Figure 47, page 119, it does seem reasonable to offer

Postulate la as having a high probability of success. If Postulate la

is not valid for the particular initial state, the only reasonable

recourse is to use general nonlinear programming methods.
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THE MINIMUM FUEL PROBLEM WITH INPUT SATURATION

I. INTRODUCTION

The minimum fuel problem with input saturation is considered

initially for first order systems. The set FN, analogous to the set

MN of the minimum energy problem, is introduced for these first order

systems. The telescoping rod analogy is then used to obtain the fuel

optimum input sequence. The problems of higher order systems can be

envisioned in _-space, but are more conveniently considered in the

partitioned solution space. Results of significant generality have been

obtained only for second order systems, where the fuel optimum sequence

is considered by closed loop methods. The closed loop solution is

obtained in terms of a set QN which is defined in _ -space. For

arbitrary N, this set has been obtained only for plants with integration

and underdamped plants with tuning. However, known properties of the

input sequence in the set FN and on the boundary of the set _N may be

of help in obtaining QN for other second order plants when N>4.

II. FIRST ORDER SYSTEMS

by

It was shown in Chapter II that for the first order plant given

i

Cp_S)"= s + A ' (4-i)

134
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the unconstrained minimum fuel sequence is given by Equations (2-74)

through (2-77). Consider the case _ > 0. The optimum fuel input

sequence is, from Equation (2-74),

u(1) = u(2) = ... = u(N-1) = o, u(N) = c_/e (s-1)_'T . (4-2)

Without any loss in generality, let the initial state c be positive.

Then if

c >e (N'I))k T (4-3) -

the last member, u(N), exceeds the saturation limit, so that, although

the sequence of Equation (4-2) does of course satisfy the deadbeat

constraint

N

j=l

N

= _j uCj)
e(J-l)_T (4-S)

j=l

it does not satisfy the saturation constraint

[u(j)[ _ i, j ffii, 2, ..., S • (4-6)

Let the set of all initial states whose linear fuel optimum input

sequence satisfies the saturation constraint be called FN. For first

order systems FN is a portion of the real line, given by

If c does not lie in FN, but does lie in _N" where for first order

sys terns,

!
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_N c c = u(j)e (j'I)>_T

j=l
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I"(J)[_ _. J= _, _, ---. _ ) •

(a-s)

then there is, by definition, a sequence satisfying Equations (4-5) and

(4-6). The problem of finding the input sequence _ich minimizes

N

.= _ I°<J)l <,-_>
j=l

subject to these equations can be solved intuitively for first order

systems. The telescoping rod analogy, described in Chapter III, can be

again used to advantage.

There are available N rods, corresponding to the invariant vectors

hj, j = i, 2, ..., N, able to be extended continuously from zero length

up to a maximum length e (j'I)_T j = i, 2, ..., N. For first order

systems these same rods are to be placed end to end along the initial

condition line, beginning at the origin and stretching out to reach the

initial state. The fuel used is measured by summing the fractional

extension of each rod used.

The maximum length of the N-th rod, corresponding to_, is

greater than any of the others, so that if _ is not in FN, this rod

should remain at its maximum length, lu(N)[ = i, and the task of reaching

continued with the next longest rod, corresponding to _-i" If

[_I > e(N-l))kT + e(N'2)_T (4-10)

the (N-2)-th rod is used, and this process continues until _ is eventually

|
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reached. For N = 3, Figure 53 shows the members of the fuel optimum

input sequence, and the sets _3 and F3. The optimum sequence is

denoted u f. Figure 53 is essentially a graphical method of finding the

f
input sequence _ in an open loop manner.

If_ffi 0, the plant is given by

Gp(S) = -sl • (4-11)

f
and each invariant vector is of unit length. The sequence

fore, not unique, unless of course _ lies on the tip of _N"

PN is simply the set of all initial states _ that satisfy

is, there-

The set

-N4£4N • (4-12)

Choosing the input sequence of Equation (2-75), that is,

u(j) fficJN, j -- I, 2, ..., N, (4-13)

is equal to the set _N" Therefore, if, from Equation (4-13),the set FN

The input sequence for the case _. < 0, corresponding to an

unstable plant, is obtained in an open loop manner by exactly the same

considerations used for the case _ > 0. The essential difference is

that, since h I is now the longest vector, FN is always the set of initial

states c satisfying

< (4-14)

The set _N does not increase indefinitely with increasing N, but rather

approaches a limit:

1 _ < 0 | (4-15)

I + e_T " ]
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For the general n-th order system, the minimum fuel problem with

amplitude constrained inputs is the problem of minimizing Equation (4-9)

subject to both Equation (4-6) and the deadbeat constraint. In the

state space, the deadbeat constraint is

C u = x(0) , (4-16)

and in _ -space the constraint is

c_=a+ H_b . (4-17)

In the solution space the set of sequences that satisfy Equations

(4-6) and (4-16) is the intersection of the (N-n)-dimensiona! hyperplane

of Equation (4-16) with the N-dimensional hypercube defined by Equation

Assuming that x(0) is in _N' Equation (A-60), the minimum(4-6). fuel

problem is to find a point u in this intersection which minimizes the

fuel, Equation (4-9). Any point u in the solution space is associated

with a certain fuel consumption, just as it is associated with a certain

energy consumption: see, for example, Figure 28, page 75. Figure 54

shows, for the case N = 2, the iso-fuel surfaces for three different

values of F. Figure 54 also shows the set of u(1) and u(2) which

satisfy the deadbeat constraint of a first order system. This is the

line

_(0) = u(1) _l + u(2) _2 ' (4-18)

where 5(0) and the first two canonical vectors, _1 and _2' are scalars.

The minimum fuel input sequence without the saturation constraint is

then u(1) ffi 0, u(2) _1.45, and the constrained minimum fuel sequence is

!
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u(2)

_x(o) = u(1)£1 + u(2)

/
/ i

,/ /

/ /

i \
/ i \ \

/ / \
/ / \

/ \

/ \ \

\ \ \
\ \ \

\ \
\ \

\ \
\

\
\

/

/ / /
/

\ -1 /"\
\ /

u(1)

Figure 54. Iso-fuel surfaces for a first order plant with N = 2,

giving the linear, _I" and constrained, _f, fuel optimum input sequences.
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uf(1) = i, uf(1) _._ 0.75.

tively in Figure 54.
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f
These points are shown as _i and _ respec-

The general problem can be formulated as a linear programming

problem, and Torng gave a detailed example to illustrate the method of

formulation and solution (29). However, the method requires the use of

a digital computer. In order to gain insight into the minimum fuel

problem, techniques are developed similar to those used in the minimum

energy problem.

The Fuel Problem in _-s_ace

_-space can be utilized to consider the constrained minimum

fuel input sequence. Since UN. n is the set of al___lcorrections _, which

when added to _o give an input sequence satisfying Equations (4-6) and

(4-17), this set not only contains the correction for the minimum energy

input sequence, but also contains at least one correction, _f, which

gives a solution to the minimum fuel problem.

be called uf. Then

Let such an input sequence

u f = u° + _ f (4-19)

o _fwhere u is the linear minimum _ input sequence, and _ is given

by Equations (3-47) and (3-54) as

[i il_ ffi = . (4-20)

Before considering further how to obtain r it should be noted that

f-

owhen -space is used, it becomes necessary to calculate u . While

I



I

I
l

i
I

I
i

I
I
I

I

I
I

1

l

I
I

142

_ -space may be useful to consider the fuel problem, for example, if

_e _f, oit is desired to compare and the calculation of u may be avoided

by studying the fuel problem in the partitioned solution space.

The Fuel Problemin the Partitioned Solutio n Space

By partitioning the matrix C into R and Q and the input sequence

into _ and _, the deadbeat constraint of Equation (4-16) was trans-

formed into the deadbeat constraint of Equation (4-17). Just as the

correction space containing the N-vector _ was partitioned into _-

space and _-space, each containing respectively the n-vector _ and the

(N-n)-vector 6, the solution space may be partitioned into two spaces:

_-space being n-dimensional with coordinates u(1), ..., u(n) con-

raining the vector _, andS-space being (N-n)-dimensional with

coordinates u(n+l), ..., u(N) containing the vector _. The relationship

between these spaces l and _ is then given by Equation (4-17).

If the input sequence is to satisfy the saturation constraint,

the components of _ and _ must satisfy Equation (4-6). Let the set A

in_-space be the set of all _ such that

[u(j)[< 1, j = l,2,...,n, (4-21)

and let the set B in B_-space be the set of all _ that satisfy

[u(j)[4 l, j = _+l, ..., N. (4-22)

These sets are respectively n-dimensional and (N-n)-dimensionalhypercubes,

centered on the origins of their respective spaces. Now consider the

deadbeat constraint, Equation (4-17). Assume that N _2n. To any initial

state _ and input _ correspond points in _-space lying on the (N-n)-
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H b = c - a . (4-23)

If N = 2n, the hyperplane reduces to a single point, since H is than

I
I

I
I

I
I
I
I

I
I

n x n and may be inverted. The vector a must lie in the set A. There-

fore, the set of _which satisfy Equations (4-17) and (4-21) is the map

of the set of points _ - _, for all _ in the set A, from _-space into

B -space. Let this set of b be called A'. Let the intersection of

B and A' be called U. Then if _ is in _N' U contains at least one

point _ such that the input sequence

satisfies the deadbeat and saturation constraints. The similarity

between _ -space and _ -space is evident. In fact, if to any point

]_ b°in -space is added the vector - _ , and the coordinates of_-space

UN_ n areare changed to those of -space, the sets BN_n, A'n
and

respectively identical to B, A' and U.

Let the fuel cost associated with _ be FA, then

,_= I_c1_>1+ ... + luc,-,:>l, c,-,..-_:>

and that associated with _ be FB, then

| _'_= luc,.-'-:,-_>l+ ... + luc.:>l (4-26)

The total fuel consumption is therefore F = FA + FB. The minimum fuel

problem with input saturation amounts to finding the point b in U which

minimizes FA + FB. The linear solution, which of course need not be in
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U, lies on at least one of the hyperplanes u(j) = 0, j = i, 2, ..., N,

since N > n and a linear fuel optimum input sequence can be given with

at least N-n members of the sequence equal to zero. An optimum solution

under the saturation constraint must lie in U. If a linear solution

cannot be found in U, the constrained solution must lie on the boundary

of U. To illustrate this formulation in _-space, Figure 55 shows the

situation for a typical second order system with N = 4. The iso-fuel

lines FB are partially shown by the dashed lines. Each iso-fuel line

shown, for both FA and FB, is separated from the next by an increment

F = 0.I. The linear solution is found by starting at any point in the

space and moving so that the sum F ffiFA + FB is reduced. A minimum

fuel solution is obtained at a particular point b when any other point

in its neighbourhood causes FA + FB to increase. In the example, the

solution lies at the crossing of the lines u(2) = 0 and u(3) = 0. This

point, which is unique and is marked with a small circle for clarity,

is not in the set U. The optimum unique constrained solution lies at

the intersection of the lines u(2) = 0 and u(1) = I, and is also shown

encircled.

While partitioning the solution space in itself provides a

graphical solution to the minimum fuel problem only for the cases n ffii,

N _3, and n = 2, N _<4, it is useful as a means to investigate the

properties of the minimum fuel solution, just as _ -space was used to

visualize the properties of the minimum energy problem.

!
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u(2) = o

u(4)

i

\
\

\
\

FB = 0.5
\
\

= 0.8
"B

\
\

u(1) = o

u(3)

u(1) = i

U
=0.I

u(1) = -i
!

FA= A

u(2) = -I

Figure 55. The minimum fuel problem solved in _-space for a

second order system with N = 4.
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As in the minimum energy problem, it is of interest to know for

what initial states the linear minimum fuel input sequence satisfies

the saturation constraints, and is therefore itself a solution to the

constrained problem.

The Set FN

Let the set of all initial states whose linear minimum fuel

input sequence satisfies the saturation constraints be called FN. The

linear fuel optimum sequence, as shown in Chapter II, is not necessarily

unique. In order that the set FN have meaning, one method of generating

the inputsequence must be established. For the moment, however,

consider the case where this uniqueness problem does not arise.

Recall that the faces of SN(I ) are the 2p line segments

L (+i,+j) and these segments generate the cenes Cs(+i,+j) as shown inS m m ' n m

Figure ii, page 41. For example, the line segment Ls(i,j ) is the set

of points c where

= _i_i + _j_j' _i' _j _ 0, _i + _j = i, (4-27)

and the line segment L (-i,j) is given by the set of points c where
s

= - _ihi + _jhj, Bi , _j > 0, _i + _j = I. (4-28)

Suppose _ lies in Cs(±i,±j). The optimum input sequence is obtained

from Equations (2-84) and (2-85):

e = uf(i) h i + uf(J) hi, uf(k) = 0, k _ i,j. (4-29)

I
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Assume for the moment that this gives a unique sequence. This requires

that the line segment which ends on _ _i _ the line segment Ls_i,_j)

and the line segment which starts from_ _j do not lie on the same

straight line. Then the set of all c given by Equation (4-29) which

give an input sequence sat_.sfy_ng the saturation constraint is given by

c = +u(i) h. + u(j) _hj, 0_ u(i) _I, 0 _u(j) _<l. (4-30)

For example, if _ lies in Cs(i,j ) the set is given by all _ satisfying

C = +u(i) h. + u(j) _j, 0_ u(i) _i 0 _u(j) El, (4-31)

and if _ lies in the cone Cs(-i,j ) the set is given by all _ satisfying

= -u(i) _i + u(j) _j, 0 _u(i) _i, 0 _u(j) _I. (4-32)

If the linear input sequence is unique for all initial states in

, the set FN is given uniquely. For each of the 2p cones Cs_i,!j) ,

form the set of all c satisfying Equation (4-30). This set is the set

FN. FN is of course symmetric with respect to the origin and contains

the set SN(1). An example of this set is given in Figure 56, for a

typical underdamped second order plant with N = 5.

Now consider the case where there is a region in FN for which

c has no unique optimum input sequence. For example, the plant I/s 2,

see Figure 14, page 47, has the regions C(I,N) and C('I,-N) in which

this problem of non-uniqueness arises. One way to get around this

problem would be to use Equation (4-29) regardless of whether the

sequence is unique or not, and then FN is given uniquely. This is not

very satisfactory however_ since another set FN can always be found

!
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merely be choosing another rule for states having non-unique optimum

input sequences. However, once one particular method of choosing the

input sequence has been decided upon, the set FN can be generated.

The Fuel Problem in _ -space

If N _ 2n, the fuel problem can be conveniently formulated in

_-space. The deadbeat constraint, Equation (4-17), gives

= _ - H_b . (4-33)

Equation (4-33) may be written as

= _ - h n+l u(n+l) - h_n+2 u(n+2) - ... - h N u(N) . (4-34)

The set,

j- 1

(4-35)

is an n-dimensional polygon centered at the origin of A-space. The

right hand side of Equation (4-34), under the saturation constraints of

is therefore the set - rNin centered on theEquation (4-22) point

= _. With N_ 2n, any point _ in A uniquely defines an entire input

if the point also lies in the polygon c - _.." , thesequence, and,
D "N-n

sequence will take _ into the origin while satisfying the saturation

constraints. The fuel consumption of such a sequence is F = FA+ FB.

Second order systems, n = 2, can be examined graphically for

N = 3 and N = 4. Although these cases are very restricted, they do

reveal several interesting aspects of the minimum fuel problem, and

indicate how more general cases might be approached.

I
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The case N = 3. The set A is given by Equation (4-21) as a

square centered on the origin, and the right hand side of Equation

(4-34), satisfying Equation (4-22), is the set of all a given by,

= _ - _3 u(3), iu(3)[ _< i. (4-36)

Therefore, if _ = _, FB = O, and if _ = _ _3' FB = i. The point

which minimizes the fuel, F = FA+ FB, can therefore be found for any

state _ in 13. The coordinates of C -space serve to give _ directly,

since when u(3) = 0, then _ = _. Thus, any _ in _ gives the vector

directly, which in turn gives the vector b. Figure 57 shows a typical

second order system, which, as shown for N = 3, gives a unique fuel

optimum input sequence for any initial state, The set FN is shown by

the heavily dashed line, and the iso-fuel lines F A as the lightly dashed

lines. The following properties of the minimum fuel input sequence with

input saturation can be observed for this example.

I. In region abcd, uf(1) = i.

2. In region ecgh, uf(3) = -i.

3. In region oegh, uf(1) = 0.

4. In region phgm, uf(2) = -I.

5. In region koph, uf(3) = 0.

Because of symmetry these regions are sufficient to characterize the

sequence for all states in _3' since if one of the inputs is fixed,

the other two are given by Equation (4-36). This method of obtaining

the input sequence is not very convenient, especially since the initial

state must be identified as belonging to a particular region, and

!
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Figure 57. The sets _ and F3 divided into regions characterizing

the fuel optimum input sequence.
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furthermore, the situation becomes more complicated for N = 4. A closed

loop method results in a much simpler way of obtaining the input

sequence. A closed loop method requires that 9 given a settling time of

N sampling periods, only the first input be determined. The problem is

then repeated for a settling time of N-I sampling periods and so on,

until N = i. The controller then identifies the state at each stage

of the regulation process, generating in turn u(1) for an N-member input

sequence, then u(1) for an (N-l)-member input sequence, and so on until

N = I, when obtaining u(1) for N = I completes the regulation.

In Figure 57, the region oegh contains initial states whose

three-member fuel optimum input sequence has uf(1) = 0. In abcd,

uf(1) = I. Figure 58 shows these two regions and their symmetrical

=o=_o_ _ _o_, Iu_<_>I=__a__o_,oo_=_o,__=_o_
i i

and those for uf(1) = 0 have vertical cross-hatching. In general, let

the set of all states where uf(1) = 0 for a given N, he called QN"

Therefore, the region in Figure 58 with the vertical cross-hatching is

denoted Q3" The regions in _3 between the cross-hatched regions

contain states where iuf(1)l-.< i. Suppose the initial state is given

i i

in a region where luf(1) l < i, and consider projecting a line parallel

to h I from the point c until it just touches the region Q3" The length

of this line defines luf(1)l . If, in order tO reach Q3' the projection

in

is in the direction -hi, then uf(1)>0. If the projections needs to be

in the direction +_i' then uf(1) < 0. This can be formalized as follows.

Assume c is in _3 and let c - _h I lie on the boundary of Q3" Then

I
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if _ is not in Q3" uf(1) = sat. _ ,

if c is in Q3" uf(1) = 0 , (4-37)

where the "sat." function is defined as

lili-Isat. _ = if _ < I .

if B i

Figure 58 shows two initial states c I and c 2. For Cl, uf(1) 0.5,

and for c2, uf(1) _ -0.75. Having generated and applied the first

(4-38)

input for N = 3, the initial state will have moved, assuming no adverse

disturbances, from c to c' in

is uniquely determined by

_2" In _2 the remainder of the sequence

(4-39)

Figures 59, 60, 61 and 62 show representative examples of the

set Q3 and its relation to _3" Figure 59 illustrates Q3 and _3 for

the plant

I

Gp(S) = --_ . (4-40)
S

Figure 60 corresponds to the plant

i

Gp(S) = 2 b2 , (4-41)s + 2as +

where the poles, real or complex, satisfy the non-uniqueness criterion

of Equation (2-91). Figure 61 gives Q3 for the plant

I
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1

Gp(S) = (s + a + jb)(s + a - jb) " (4-42)

where the poles are such that the input sequence is always unique, and

finally, Figure 62 shows a plant of the form of Equation (4-42) where

the poles have been tuned.

Consider the plant of Equation (4-40). Since it is known,

Chapter II, page 46, that the linear minimum fuel sequence is not

unique in C(1,3) and C(-1,-3), it is to be expected that Q3 is not

unique. The vertically cross-hatched region of Figure 59, page 155,

shows one possible extreme that Q3 may take. This is the set

j=2

(4-43)

The smallest Q3 is the set of points lying on the line formed by

joining _2 t° _3 and -_.h2 to %" This.is part of the boundary of the

largest possible Q3" Equation (4-43), and is shown by the solid line

in Figure 59. Another plant which has a non-unique Q3 is shown in

Figure 60• page 156, corresponding to the plant of Equation (4-41).

The largest Q3 is again sho_mby the vertically cross-hatched region,

( )Q3 : c c-- p.j hi; [laj[ _ 1

j=2

and is

• (4-44)

and the smallest Q3 is given by
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(, )Q3 = _ _ = _j hi; 0 _ _j _ 1 . (4-45)

j=2

The next two plants have unique sets Q3" Figure 61, page 157,

corresponding to the underdamped plant of Equation (4-42), shows _i

interior to the set $3(I ). Figure 62, corresponding to the tuned plant,

also has _I interior to the set $3(I ). In both cases Q3 is given by

Equation (4-44). The size of Q3 relative to _3 is a measure of the

usefulness of the first member of the control to the regulation process.

If Q3 is large, as for example when _I is interior to the set $3(I),

see Figure 61 and 62, the ma_ burden of the regulation usually rests

upon the last two inputs. When the size of Q3 is small relative to

_3" the first control plays an important regulator process.role in the

Figure 59 and, to a lesser extent, Figure 60 are examples where the

first input may be at its limit for a large region of initial states

in _3"

The case N = 4. It is a little more complicated to obtain the

set Q4' and, depending on the particular invariant vectors of the

plant, Q4hasmanymore possible shapes than Q3"

The set A is unchanged, given by Equation (4-21), but the right

hand side of Equation (4-34) satisfying Equation (4-22) becomes the

set of a satisfying

The set Q4 owy therefore be found by methods similar to those illustrated

!
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in Figure 55, page 145.

of the polygon

h 3 u(3) +.h.4 u(4);
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In practice a transparent (onionskin) template

lu{3)l< 1, lu(4)I _ 1 (4-47)

is constructed, and the iso-fuel lines, FB fficonstant, are drawn on

this template. The iso-fuel lines FA= constant having also been

constructed in the set A, the template may be positioned with its center

anywhere in _4' thus examining the first input member of the fuel

optimum input sequence for all possible initial states in 14. The

plants

i

Gp(S) = --_ (4-48)
s

and

1

Gp(S) = s(s + a) (4-49)

were studied in this manner and the sets Q4 constructed. Again, as would

be expected, for plants with integration the set Q4 is not unique.

Figure 63 shows that the set Q4 for the plant of Equation (4-48) may

vary from just the solid line, formed from -_4' -_3 -_2 and _4' _3' _2"

to the entire region enclosed by this solid line and the dashed line.

The plant of Equation (4-49) has a set Q4 formed in exactly the same

manne r.

For N >4, the problem of finding Q4 becomes very complicated

when tackled in this manner. However, there are two considerations which

can help in the graphical construction of the set QN"
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I. Initial states lying on the boundary of _N have unique

input sequences (the set U, equivalently UN_n, is a point, as is shown

for example in Figure 43, page Iii). It is a straightforward matter

to find the input sequence for initial states on the boundary of q,

u f *and u(1) = (I) can therefore be found uniquely for such states .

2. The set FN can be of help in finding %" The set FN includes

a considerable proportion of the states in I;. It can therefore be

used to obtain uf(1) when _ is in FN, and to indicate if uf(1) = 0

when _ is not in FN.

Second Order Systems with Integration

If the plant has integration; i.e, is of the form of Equation

(4-48) or Equation (4-49), the set _ can be found for all N. Desoer

and Lee (22, page 371) defined the set TN(f ) as the set of all initial

states which can be brought to the origin in N sampling periods with a

fuel consumption F < f. Therefore, in C-space,

j--1 j=l

If f = i, TN(f) becomes SN(1), and if f = N, _(f) becomes

and Lee demonstrated that _(f) is convex and contains the origin, and

lu(j)l-.< f ) "

(4-5o)

q. Desoer

There is one exception. If the second order system has tuned

complex poles, states on the boundary of _N do not necessarily have

unique input sequences. However, as will be shown, for such systems

the set QN can be found quite easily from other considerations.
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g that if an initial state c is in _TN(f), the boundary of _(f), any

I control sequence which satisfies Equations (4-4) and (4-6), and for

-- wh_huF t _is an optimum input sequence. After some rather detalled

g "c N

g the sets Q3 and Q4 given by Equation (4-51). The set QN is not unique,

and Figure 64 shows alternative sets Q3 and Q4 for the plant of Equation

D (4-48).

i Sec°nd _e_l_items with Tuned C°mplex P°les

B Gp(S) = _ (4-52)

H can be tuned by making

as explained in Chapter III, page 130, and the invariant vectors hl,

H h3, h5, ... lie in 6-space on the line c2 = 0, and h2, _4' _" "'"

D lie on the line cI = 0. Figure 52, page 131, shows these invariant
"_ vectors for a typical tuned plant. The fuel optimum inPut sequence can

i be found for these tuned plants in a very straightforward manner, by

iii either open or closed loop methods. The invariant vectors for a tuned
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Alternative sets Q3 and Q4 for the plant I/s 2.
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I

h_ h. = 0 , (4-54)
--I --j

if i is an even integer and j is an odd integer. Consider the odd

numbered invariant vectors lying along the line cI = 0. These vectors

cannot be utilized in any way to help represent a component c2 of an

initial state _. Similarly the even numbered vectors, lying along the

line c2 = 0, cannot contribute towards a representation of the component

cI of the initial state. The input sequence may therefore be divided

into two parts, one part containing the odd numbered members, u(1),

I
I
l

I

I
I
I

u(3), ..., and the other the even numbered members, u(2), u(4), ....

Then, compare Equations (3-133) and (3-134), the deadbeat constraint,

Equation (4-4) becomes with N arbitrarily chosen even,

c I = u(1) - u(3)e 2aT + u(5)e 4aT

c2 = u(2) - u(4)e 2aT + u(6)e 4aT

Now compare the first order plant,

i

_p(S) = s + 2a Q

(N-2)/2 (N-2) aT
- ... (-I) u(N-l)e ,

(4-55)

(N-2)/2 (N-2)aT
... (-I) e .

(4-56)

(4-57)

The initial state for this plant is a scalar quantity, let it be c, and

I

I

the deadbeat constraint is

c = u(1) + u(2)e 2aT + u(3)e 4aT + ... + u(N)e (N-I)2aT . (4-58)

An example of the fuel optimum input sequence for the plant of Equation
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(4-57) is shown in Figure 53, page 138. Similarly the fuel optimum

input sequence for a tuned second order plant is shown in Figure 65.

Figure 65 is a graphical method of obtaining the sequence, and N is

chosen as N = 6. The two parts of Figure 65 are seen to be identical

except for the labelling of the input members.

The input sequence may also be obtained in a closed loop manner.

Since the first input, uf(1), is always independent of the component

c2, it is only necessary to define QN for the component cI. It is

convenient, however, to give uf(1) in the equivalent graphical form

shown in Figure 66. Since _ does not lie on the cI axis of _ -space,

Figure 66 is applicable to settling times of five or six sampling

periods.

To conclude this discussion of the fuel optimum sequence for

Figure 67, which shows the set _6 containing atuned plants consider

given initial state _. Figure 65 gives the fuel optimum representation

as

= 0 hi + 0.5 h2 - 0.5 _3 - _ + _5 + _ " (4-59)

j.

Since the first input is zero, uf(1) = 0, the system is allowed to run

freely for one sampling period, after which the state has reached the

point _i given by

_i = 0.5 _i - 0.5 _2 - _3 + _ + _5 " (4-60)

The plant then receives an input of +0.5, and moves to the point _2'

where



I

I
l
i

l

I
i
|

I
D

I

I

I
I
I

I

I

168

uf(j) j odd

_(i) ..

hi hs_ ci

k/<_>
-i _"

Z

a. Odd numbered input members

uf(j)

m

/<2
L_______.___--_..i -1

j even

uf(6) uf(2)

b. Even numbered input members

Figure 65. The fuel optimum input sequence (open loop) for a

tuned second order plant with N = 6.
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c 1

ao
The invariant vectors hi, h 3 and h 5

uf(1)

i

0

-I

cI

/

b. N=5or6

uf(1)

i

0

-i

/
cI

c. N=3 or4

uf(1)

cI

d. N = i or 2

Figure 66. Graphical forms of the closed loop method for finding

the fuel optimum input sequence.
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system with N = 6.
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A fuel optimum trajectory for a tuned second order
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-_2= - o.5-h- -h2+ -h3+ _, • (4-61)

Over the next sampling period the input -0.5 is applied and at the end

of this sampling period the plant state is at

c 3 = - h I + h 2 + h 3 • (4-62)

following which the inputs -I, +I, +i are applied successively. The

trajectory between the sampling periods is indicated by the dashed line

in Figure 67.
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CHAPTER V

PRACTICAL IMPLEMENTATION OF THE OPT!MD_. CONTROL SYSTEM

I. INTRODUCTION

The purpose of this chapter is to discuss how the theory of the

preceeding chapters can best be utilized to generate the minimum energy

and minimum fuel input sequences. Both open loop and closed loop

methods are considered, the major portion of the chapter being concerned

with the closed loop control of first and second order systems. The

closed loop controllers required vary in complexity from simple direct

feedback, to time-varying piecewise linear gains feeding a logic unit.

II. CLOSED LOOP VERSUS OPEN LOOP CONTROL

The configuration of the controlled plant and the controller is

shown in Figure 2, page 3. The controller receives information on the

state of the plant through identification of the state variables,

Xl(t), ..., Xn(t ). Not all of these variables may be available, and

some may therefore have to be estimated. However, it is tacitly assumed

that, whenever necessary, the state vector,

Xl(t)

_(t) = . , (5-I)

Xn(t)

172
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can be found at each sampling period, t = kT, k = 0, i, .... Having

been supplied with the state vector, the way in which the controller

acts on this information determines whether the system operates in an

open loop or closed loop manner. The desired state of the plant is at

the origin of the state space and at time t = 0 the plant is in some

disturbed state, _(0) _ 0. The controller is allowed a total time of

NT seconds to bring the plant to the desired state in some optimal

fashion. If the controller, being given the state _(0), generates the

entire optimum input sequence, u(1)_ u(2), ..., u(N), on the basis of the

state _(0) alone, the control is said to be open loop. If, however,

the controller is structured so that it requires knowledge of the plant

state at each sampling period in order to generate the optimum input

sequence, the resulting control is said to be closed loop. Open loop

control has the disadvantage that if the system encounters any disturb-

ances during the time interval 0 < t _<NT, the primary mission, that of

bringing the state to the origin, will almost inevitably fail to be

accomplished. On the other hand, closed loop systems, being based on

a feedback principle_ can still complete the primary mission if the

disturbances are not too severe. It is beyond the scope of this disser-

tation, however, to attempt to discuss the various cited advantages and

disadvantages of each method.

III. OPEN LOOP CONTROL

The main body of this dissertation has been concerned with open

loop methods for solving the minimum fuel and energy problems. The

!
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open loop method of solution follows as a natural consequence of the

particular approaches used on the problems. The one exception is, of

course, the closed loop approach to the minimum fuel problem with input

saturation discussed in the latter half of Chapter IV. The open loop

approaches to the various problems are now presented. In such methods,

the entire optimum input sequence is calculated, stored, and fed to the

plant piece by piece.

The Linear Minimum Energy Input Sequence

For the general n-th order plant, the linear energy optimum

o

input sequence 3 _ , can be calculated directly from Equation (2-37):

Oc_[]-__u = cc t x(O), (5-2)

where C is the N x n matrix given in Equation (2-4). The inversion

n x n matrix [CC t] -I can be performed on arequired to obtain the

o
digital computer if, say, n > 4. If the sequence u is to be studied

over a range of initial states, the plant is of the first or second

order and N is not too large, then graphical methods may be more con-

venient. The graphical approach is given in Chapter II, and is based

on Equation (2-25),

b_O= t __° • (5-3)

o
relating the two parts of u .

Both of these methods are described in detail by the example on

page 58, which concerns itself with the plant i/s 2 with the settling

time given as four sampling periods.

!
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I

First order systems are solved, the solution being given by

Equations (2-74) through (2-77). The plant

i

Gp(S) = s 45-4)

l

l
I

has an infinite number of possible input sequences. Two of the more

obvious ones are given in Equations 42-75) and 42-76). Second order

systems are solved if the state c can be identified as belonging to one

of the cones Cs4_i,_j). Equations (2-84) and (2-85) give the solution

when such an identification has been made. The minimumfuel input

l

l
l

sequence may not be unique, and this knowledge can prove useful. For

example, consider the plants,

i

Gp(S) =-_ (5-5)
s

and

I

!

!

!

i

Gp(S) = s(s + _) " 45-6)

The set $541 ) for the plant of Equation 45-5) and an example of the

set $441 ) for the plant of Equation 45-6) are shown in Figure 14, page

48 and Figure 15, page 49 respectively. Thesefigures show by the

cross-hatched areas the regions in which the minimum fuel input sequence

is not unique. It will be noted that the invariant vector _I can always

be used in conjunction with _ to give a fuel optimum input sequence

for any initial state. Therefore, if the plant is given by either

! Equation (5-5) or (5-6), the optimum input sequence can always be

obtained as

!
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= 1 c ; u(2), ..., u(N-1) = 0 . 45-7)

Lu(N)

Equation (2-i14) gives such an input sequence for the minimum fuel

example beginning on page 64. As another example of a second order

system for which the fuel optimum input sequence is readily obtained,

consider the case of a plant of the form

Gp(S) = I (5-8)
(s + a + jb)(s + a - jb)

where the tuning condition of Equation (3-130) is satisfied; i.e.,

bT = _ . 45-9)

The first six inv_Lriant vectors are shown in Figure 52, page 131, for

the case a > O. The components c I and c 2 of the initial state c can

therefore be represented by Equations (3-135) and (3-136):

N

c I = u(1) + _ u(j)(-l)(J-l)/2eCJ-l)aT- j
odd

j=3

N

c 2 -- u(2) + _ u(j)(-l)(J-2)/2e_J-2)aT- , j even.

j=4

Without loss of generality, suppose that N is an even integer. The

invariant vectors _ and _-i are therefore given by

4-1) (N-2)/2 e (N-2) aT

and

(5-io)

(5-11)

(5-12)
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45-n)

If a >0, these are the longest invariant vectors, and, compare Equation

(2-74), the unique fuel optimum input sequence is

u(1) = u(2) ffi... = u(N-2) ffi0

!

!

!

u(N-l) = Cl(-l) (N-2)/2e'(N-2)aT

u(N) ffic2(-I ) (N-2)/2e-(N-2 )aT

If a ffi0, all the invariant vectors are of unit length, corresponding

to the plant

(5-14)

! Gp4S) = s2 b2 , bT = _ , (5-15)( + )

l
I

l

and one solution to the minimum fuel problem would be Equation (5-14)

with a = 0. Another solution, compare Equation 42-75), with N even, is

u41) = - u(3) = ... = 4-i) (N-2)/2 u(N-l) = 2Cl/N

u42) = - u(4) = ... = 4-1)(N'2)/2
u(N) = 2c2/N

. (5-16)

l
I

I
I

Finally, if a < O, corresponding to an unstable plant of the form of

Equation 45-8), the unique fuel optimum solution is, compare Equation

(2-77) ,

u(1) = Cl, u(2) = c2, u(3) = u(4) = ... = u4N) = 0 . (5-17)

More general second order systems, as mentioned above, are

solved by Equations (2-84) and (2-85). If the initial state _ lies in

!
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the cone Cs(_i,_j) , the state can be uniquely represented as

= _i _i + B2 _j '

giving the minimum fuel input sequence as

u(i) = _1" u(j) = _2' u(k) = 0, k = 1, 2, ..., N, k _ i,j.
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(5-18)

(s-19)

If N is large, and the plant has real poles, the state space may be

partitioned by many cones, and, even with the help of a digital computer,

it may be a problem to identify the state as belonging to a particular

cone. As is shown later, a closed loop procedure may help to solve

this problem, but hybrid techniques are necessary.

Higher order systems can, in principle, be treated by the

techniques underlying Equations (5-18) and (5-19), but in practice,

since the cones must be defined and identified in n-dimensions, it may

be a very difficult task to obtain the solution. A general method

would be to use a linear programming technique.

The Minimum Energy Input Sequence with Saturation

The problems involved in obtaining the optimum input sequence

when the input members are subject to amplitude constraints are discussed

in detail in Chapter III. If the linear minimum energy input sequence_

o
u , has members which exceed the saturation limits, it is shown that

the constrained minimum energy solution, ue_ , must have one or more of

its members equal to the saturation limit. Theorems 2 and 3, given on

pages 103 and 120 respectively, can be used to find whichmembers of

e
u are equal to the limit.

!
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o
If only one member of _ exceeds the saturation limit,

lu°(j)I > t,

Theorem 2 says that

lu°(i)l < I, i = i, 2, ..., N, i _ j,

ue(j) = sgn. o(j)

The problem then becomes:

N

I u(i)2

i=l

i_j

subject to

minimize

N

179

(5-2o)

(5-21)

(5-22)

(5-23)

i=l

If the solution to this second problem has all its members lying within

the saturation limits, the original is solved. If only one of its

members exceeds the saturation limit, Theorem 2 again guarantees that

Equation (5-21) gives the corresponding member of u e. Suppose that, on

continuing in this manner, Theorem 2 is applicable for each new problem;

i.e., no more than one member of each corresponding linear minimum

energy input sequence exceeds the saturation limits: eventually,

of course that the initial state c is in _N' there will resultassuming

a problem whose linear energy optimum input sequence satisfies the

saturation contraint. This solution, combined with all the members which

e

were given by Equation (5-21), constitutes the sequence u .

I
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0

If more than one member of _ exceeds the saturation limit,

Theorem 3 is applicable. Theorem 3 gives two conditions which must be

satisfied before Equation (5-21) can be used to give the members of u .

The first condition is Equation (3-105), and this may be verified by a

simple computation. The other condition which must be satisfied is

stated in Equations (3-106) and (3-107). In general, it would be a

very complicated task to check this condition each time Theorem 3 was

applicable. Therefore, since it seems likely that this condition will

rarely be violated, it is suggested that when more than one member of

a linear minimum energy sequence exceeds the saturation limit, only

the test of Equation (3-105) be used to determine for which of these

members Equation (5-21) is applicable. If, on following the step by

step procedure outlined above, there eventually results a linear energy

optimum sequence which does satisfy the saturation constraints, the

omission of the second condition will have been justified. On the

other hand, if it eventually becomes obvious that it is now impossible

to take the state into the origin with the constrained inputs associated

with the remaining invariant vectors, then Equation (5-21) has been

applied incorrectly to one or more of the input members. An example

of this is given on page II0.

It was shown in Chapter III that first order plants and second

order plants with integration or tuned complex poles can always be

solved by the systematic use of Equation (5-21). The examples on page

76 and page 129 give the minimum energy input sequence for a first order

2
plant and the plant i/s respectively.
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The open loop technique of nonlinear programming is a general

method which can always be used to obtain a solution to the minimum

energy problemwith input saturation (31, 32).

The Minimum Fuel Input Sequence with Saturation

Chapter IV discusses the general problem of obtaining the

minimum fuel input sequence with input saturation. The optimum sequence

for first order plants and second order underdamped plants with tuning

can be obtained quite easily in open loop form. Figure 53, page 138,

gives an example of the optimum sequence in graphical form for a first

order plant. Figure 65, page 168, gives the optimum sequence for the

tuned plant in a graphical form. Second order plants with real poles

and untuned underdamped plants are best treated by closed loop techniques.

Alternatively, they can be approached in an open loop manner by the use

of linear programming (29, 31). Linear programming may also be used as

a general method of obtaining the amplitude constrained fuel optimum

input sequence for higher order systems.

IV. CLOSED LOOP CONTROL

If the system has closed loop control, it is generally implied

that the input sequence is generated as

u(t) = f[xl(t), x2(t), ..., Xn(t), t]

where f is some scalar function of the state vector _(t) and the time

t. The most general form of Equation (5-24) that is required to cover

the cases discussed below is

(5-24)
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u(k + i) = f [_(k), kT] , k = 0, i, ..., N-I . (5-25)

Equation (5-25) means that the control level, u(k), over the time

interval (k - I)T < t ..<kT is obtained from some function of the state

variables at the time t = (k - I)T, and, as implied_ this function may

not be the same at each sampling instant.

The Form of the Feedback Function

Equation (5-25) may take several different forms. Before

discussing the closed form solutions to the minimum energy and fuel

problems, it is useful to classify some of the different types of feed-

back that will be of interest.

Time-invariant _constant_ linear feedback. Figure 68 shows the

controller configuration. The controller gives the input sequence as

u(k) = fl Xl(k) + f2 x2(k) + "'" + fn Xn(k) (5-26)

where fl' f2' "''" f are constant. Such feedback has been used ton

implement linear time optimum control (7), when the coefficients fl_

f2' "''' f constitute the first row of the matrix R "I. Another examplen

where time invariant linear feedback can be used to implement an optimum

control sequence is when the cost function is of the form

N

I x(k) t ut (5-27)p x(k) +_ Su ,

k--i

where_ in general, S is an n x n positive definite matrix and p is an

N x N positive definite matrix. If N---_ _o, the optimum feedback

approaches the form of Equation (5-26), (I, page 486; 17, page 1823).

I



I

!

!
!

I
!

!
!
I

!
!

I
I

I
I

!
I

!

xl

v
f__e

v

cd

v

I
I

i
I
I
I

I

I
!
!
t
!

I
I
I
I

-J.

r !

o _"o
_,-_

_ o
L',,10 _

7

I

i

I
!

o
5...I
4_J

o
0

_J

o

!

J.J

o

o

183



I
I

I

I
l

I
I
I

l
l
I

I

I
I
l

l

l

184

Time-invariant piecewise linear feedback. The input sequence for

the time optimum deadbeat regulator with input saturation has been

implemented, for second order systems with real poles, by using only a

piecewise linear function of the state (14). Figure 69 shows a controller

configuration of this type. Third order systems with real poles require

slightly more complicated considerations (24). The linear transforma-

tion R -I enables the controller to work with the state in _ -space

rather than _ -space. The function f is a piecewise linear function

of the variable c2(t ) . This function can be implemented with the use

of analog devices (14). The output of the summing junction, f(c2) + Cl,

as will be shown later, represents the distance of the state c, in the

direction of the cI axis, from a line in two-dimensional _ -space.

If the state lies to the right of the line, the quantity f(c2) + c I is

positive, and if to the left of the line, f(c2) + cI is negative. The

ideal saturation function following the summation has the output

sat. If(c2) + Cl] , where the sat. function is defined by Equation

(4-38).

Time-varyin_ linear feedback. If the controller employs time-

varying linear feedback, the input sequence is generated as

u(k) = fl(k) Xl(k ) + f2(k) x2(k) + ... + fn(k) Xn(k ) (5-28)

= _(k) x(k), k = I, 2, ..., N . (5-29)

The physical configuration of the controller is the same as that shown

in Figure 68, except that the gains fl' "''' fn change, so that at each

!
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sampling period they have a predetermined optimum value. The cost

function of Equation (5-27) requires such a feedback function if N is

finite (I, 5, 17).

Time-var in iecewise linear feedback. Figure 69 shows an

example of time-invariant piecewise linear feedback. Supposethe

function f does not remain constant, but instead takes on different

forms at each sampling instant. The resulting feedback is called time-

varying piecewise linear feedback. A slightly more complex form of

this type of feedback uses two such time-varying functions, each fed

with the variable c2. With the help of some elementary logic, the

controller is capable of finding the distance, in the direction of the

c I axis, of a state _ from some time-varying polygonal region in a two-

dimensional "_-space.

Having considered the types of feedback that may be used, the

closed loop control of the minimum fuel and energy systems are now con-

sidered in detail.

V. CLOSED LOOP CONTROL FOR THE LINEAR

MINIMUENERGY SYSTEM

The open loop solution to the linear minimum energy problem can

be obtained from Equation (5-2). If the suggested settling time is

N-sampling periods, the n x N matrix C in Equation (5-2) is given by

Equation (2-4) as

C = [rl, r 2, ..., rN] , (5-30)
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r. = - G(-jT) h(T)• j = I, 2• ..., N (5-31)
--]

are the first N canonical vectors• as given in Appendix A• Equation

o
(A-19). The first member of the N-member input sequence• _ , is given

by

u°(1) = _(I) _(0) • (5-32)

where _(I) is the first row of the matrix Ct [CC t] -I• and _x(0) is the

initial state, given at time t = 0. Rather than calculating the second

row of this matrix to obtain u°(2)• the closed loop procedure requires

the calculation of the first row• f(2) of the new matrix C t [CC t] -I

where the matrix C is now n x N-I, and is given by

[_,_, ..., .___] -C (5-33)

After one sampling period the plant will have the state _(i), and the

second input to be applied is then

u°(2) = _(2) _(i) . (5-34)

If no disturbances were present over the first sampling period, u°(2)

as given by Equation (5-34) will be exactly the same as the member

that could have been obtained from the initial state• _(0), using the

second row of the original N x n matrix C t [CO t ] -i C being given by

Equation (5-30). To continue this feedback generation of the optimum

input sequence, let _(j + i) be the first row of the matrix Ct [CO t ] -I

when

[_i' _2' "''' _N-3" ] • j = 0, i, ..., N-n .C (5-35)

I
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(5-36)

and this may be inverted. Equation (5-36) defines the matrix R, see

Equation (2-8), so that f(N-n + i) is the first row of R -I. Since the

object of the regulating system is to force the state to the origin,

the feedback must be kept constant for the remainder of the regulation

process. If no disturbances occur over the last n sampling periods, the

regulation will be completed in a total of N sampling periods. If such

disturbances do occur, the feedback will keep on trying to force the

state into the origin.

Thus, _(i) is the first set of gains in Equation (5-29), _(2) the

second set, and so on. The optimum controller uses these time-varying

gains, and the configuration is shown in Figure 68, page 183. At the

beginning of the regulation process the controller has the vector gain

_(i), and, operating on the state 2(0), gives the hold device the first

optimum input level to be applied to the plant. During the time

0 <t ..<T, this gain is replaced by _(2), which, at t = T, operates on

the state 2(1) to give the second input level. This process continues

until only n sampling periods remain. The feedback is then kept constant

at f(N-n + i), producing the last n input levels, u°(N-n + I),

u °u°(N-n + 2), ..., u°(N-l), (N).

The implementation of these time varying gains may prove too

costly in practice, and it has been suggested that an approximation to

the minimum energy input sequence could be obtained by using the fixed

!
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gain f(1) for the entire input sequence (48). For plants with real

poles or heavily damped complex poles, a near deadbeat response is

attained, and the energy consumption is reasonably small. The choice

of N naturally has considerable effect on the settling time, and may

therefore be used as a design parameter.

9-i. CLOSED LOOP CONTROL FOR THE

LINEAR MINIMUM FUEL SYSTEM

First Order Systems

Consider the first order plant,

%( = I . (5-37)s) s+_,.

When _ > 0, Equation (2-74) gives the unique fuel optim,_m solution as

u(1) = u(2) = ... = u(N-I) = 0, u(N) = c(O)/e (N-I)pkT, (5-38)

where c(0), a scalar, is the initial state in _-space. The controller,

having been allowed N sampling periods to bring the state to the origin,

therefore waits for N-I sampling periods, and then applies the input

u = c(N-l) . (5-39)

If _= 0, there are many possible input sequences which take c(0) to

the origin with minimum fuel. The input sequence of Equation (2-75),

u(1) = u(2) = ... = u(N) = c(0)/N ,

minimizes not only the fuel, but also the energy.

of Equation (2-76),

u(1) = c(0), u(2) = u(3) = ... = 0 ,

(5-40)

If the input sequence

(5-41)

is chosen, the minimumfuel regulation may be accomplished in only one

I



I
I

l
I

I
i

I
I

I
l
I

I

I

I

I

190

sampling period. If _< 0, the input sequence of Equation (2-77) is

optimum, giving the input sequence as in Equation (5-41).

The implementation of these sequences as closed loop controllers

is straightforward. Consider Equation (5-39). The controller waits

(N-I)T seconds and then switches the state of the plant directly into

the zero order hold. The implementation of the sequence of Equation

(5-40) requires a time-varying gain, so that

u(k + I) = c(k)/N - k, k = 0, I, 2, ..., N-I. (5-42)

The sequence of Equation (5-41) requires only that the state be fed

directly into the s_ple-hold device. Figure 70 shows how these three

controllers might be implemented.

Second Order Systems

General second order systems. The principle of the closed loop

procedure is as follows. The sets _Sk(1), k = 3, 4, ..., N are con-

structed as the convex hull, see page 36, of the set of 2k points,

_I' _2' _3' "''' _k " (5-44)

Suppose N-k sampling periods have elapsed since the time t = 0 when the

regulation began, and the state of the plant is _(N-k). The optimum

input u(N-k + I) is then found by considering _Sk(l ). If _i does not

lie on _Sk(1), the input u(N-k + i) = 0. If _i does lie on _Sk(1), the

input u(N-k + I) may or may not be zero, depending on the location of

_(N-k). Consider Figure 71, which shows the two-dimensional _ -space

divided into six regions. Regions A and A are the cones Cs(l,-j) and

I
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A

u(t)
zero order hold

-(N-I)T volts _%_initial

T L+______ J
c, plant

state

condition

=0

+T volts

a. X>0

_(t)
zero order hold

T N-k F c, plantstate

b. _. =0

u(t)
zero order hold c, plant

T state

c.X<o

Figure 70. Closed loop implementation of the linear minimum fuel

input sequence for first order systems, i/s + _.
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c 2

C

B

1

A h.
--j

Cs(-I

cs(1,-j)

C

Figure 71. The invariant vector h lying on _Sk(1) for a typical

second order plant. --i
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m

(l,-i) and C (-l,j),Cs(-l,j). The regions B and B are the cones Cs s

and the cross-hatched regions, C and C--, comprise the remainder of

-space. If c(N-k) lies in either C or C--, u(N-k + i) = 0. If

c(N-k) lies in, A or A--, u(N-k + I) is given by, see Equations (2-84)

and (2-85),

u(j)

If c(N-k) lies in B or B , u(N-k + I) is given by

:
u(i)

The procedure is initiated with k = N. By considering _SN(I ) the input

u(1) is generated. Then the set _SN_I(I ) is used to give u(2), and so

on, until only two sampling periods remain. The remaining two input

members, u(N-l) and u(N) are then given uniquely as

u(N-1) = ci(_-2) , (5-47)

u(N) = ci(N-i) , O-4a)

where Cl(k ) is the first component of the state c(k).

The actual implementation of this procedure by a closed loop

controller is now discussed. Consider each of the regions where

u(N-k + I) is not zero. In region A the minimum fuel representation of

the state c(N-k) is

c(N-k) = u(N-k + i) h I - u(j) hj • 45-49)
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in region A--, the representation is

c(N-k) = - u(N-k + i) h I + u(j) h. .
m _3

In regions B and B--, the representations are• respectively•

(5-50)

c(N-k) = u(N-k + I) h I - u(i) h.
_]L

(5-Sl)

__ - _=crN k" -u(N-k + I) nI" + u(i) h. .--i
(5-_2)

In any one of these four regions• u(N-k + i) is simply the distance of

the state _(N-k), in the direction of _ _i" from the cross-hatched

region bounded by the lines _ h. and _ hi • -oo < _ <oo. The sign of-j

u(N-k + I) is positive if _(N-k) lies in regions A or B, and negative

m

if it lies in A or B . Let

hil lho _ •

and define

h° _--

--3

hjl

hi2

• j = 2, 3, ..., N, (5-53)

fi(c2) =

hil

hi2 c2 ,
(5-54)

h!
fj (c2) = _ hj 2

The quantity fj(c2* ) •

c2 . (5-55)

for example, is the horizontal distance between

the c2 axis, at the point c2 and the line _ hj, -oo < _ < oO . Suppose

the state c(N-k) lies in either region A or A . It can be seen that

u(N-k - I) = a = fj[c2(N-k)]LJ + Cl(N-k) " (5-56)

Similarly• if c(N-k) is in region B or B',
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(5-57)

Equation (5-57), and c2(N-k ) can be combined in a logical manner to

produce the optimum value of u(N-k+ i). For example, suppose both a

and b are positive and c2(N-k ) is negative. The correct value of

u(N-k + I) is therefore a = f'l [c2(N'k)] + Cl(N'k)" Figure 73 shows the

structure of the optimum controller. The gains fi(c2) and fj(c2) are

found from the sets _SN(1), ..., _$3(I ). If for any k, _i lies interior

to _Sk(1), the f. and f. are chosen to give a and b of opposite sign soi ]

that the resulting input is zero. For the last two sampling periods

the gains f. and f. are to have zero slope, so that u(N-l) and u(N) are
i 3

given by Equations (5-47) and (5-48). The logic remains unchanged

throughout the regulation process.

Second order systems with integration. Equation (5-5) and 45-6)

describe second order systems with integration. Suppose that N-k

sampling periods have elapsed since the regulation was started at time

t = O, and that the state of the plant has moved from c(O) to c(N-k).

A linear fuel optimum input over the next sampling period can be found

from Equation (5-7) as

u(k)

Defining the feedback as

I
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fk(c2) = - _2 c2 ' k = 3, 4, ..., N, (5-59)

gives the desired optimum input to the zero order hold as fk(c2) + c I.

Over the last two sampling periods, u(N-l) and u(N) are again given by

Equations (5-47) and (5-48), so that the last two gains are f2 = 0,

fl = 0. The linear fuel optimum controller configuration, shown in

Figure 74, is much simpler when the plant has integration.

Second order systems with tuned complex poles. Figure 52, page

131, shows the invariant vectors for a plant of the form

1

Gp(S) = (s + a + jb)(s + a - jb) , a > 0 , (5-60)

when the tuning condition, Equation (5-9), is satisfied• If a > 0, see

Equation (5-14), all the input members are zero, except the last two.

In closed loop form, the controller feeds nothing back until t = (N-2)T.

The first component of the state in _ -space is then fed directly into

the zero order hold. The controller configuration is very similar to

that shown in Figure 70, page 191, for the case _k> 0. The optimum

controller for the case a _ 0 is also directly comparable to the

corresponding case _k_ 0 shown in Figure 70.

VII. CLOSED LOOP CONTROL FOR MINIMUM

ENERGY WITH INPUT SATURATION

First Order Systems

The first order plant is given by

1

_p(S) = s + (5-61)

I
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It is assumed that the initial state• c(0), a scalar• lies in the set

_N• so that• from Equation (3-8)•

N-I

Icco)l_<_ _J_ , c_-_2)
j=O

where _ = _kT. Assume further that only k of the original N sampling

periods remain to complete the regulation and that the state of the

plant has moved from c(0) to c(N-k). The remaining members of the

linear open loop energy optimum input sequence are then given, from

Equation (3-3), as

u°(N-k + i + j) ---ej_ c(N-k)

k-I

e2i_

i=O

• j = 0, i, ..., k-l.

(5-63)

Now, from Equation (5-62), the state c(N-k) may be assumed to lie any-

where in the range

k-i k-i

I ei_ ..< c(N-k)_ I

i=0 i=0

eJ_ • (5-64)

Assume, without loss of generality, that c(N-k) > 0, and consider how

ue(N-k + I) varies as c(N-k) moves from the origin to its extreme positive

value. There are three possible cases: _k > 0, _.= 0 and _k< 0.

The case _k> 0. Figure 26, page 70, shows that as the state

moves from the origin in the positive direction_ there will come a point

where the last input, u°(N), is equal to the saturation limit, +I. From

I



!
B

!
!

!
!

B
B

II
B
!

B
B

II
!

il

!

201

Equation (5-63) this point is given by

k-i

-(k-l)_ 7 2i_ (5-65)c(N-k) = e _ .

i=O

For future convenience, define

k-i 2k_

I 2i_ e - I (5-66)d(k- I) = e - 2_ "
e - I

i=0

Equation (3-10) says that if

c(N-k) _ e"(k-l)_ d(k- i) , (5-67)

then

ue(s) = 1 . (5-68)

As c(N-k) increases up to the point e-(k'l)_ d(k - I), u°(N-k + I)

also increases, and, from Equation (5-63) with j = 0, reaches the

value

e (5-69)u (N-k + I) = e-(k-l)_

If c(N-k) passes the point where u°(N) = I, Equation (5-68) gives

ue(N) = i. Since only k sampling periods remain, the invariant vector

associated with u(N) is the k-th invariant vector, which has the length

e (k-l)_ . Therefore, in order to continue, Equation (5-63) must be

modified to

u°(N-k + i + j) =
ej'_ [c<N-k)- e(k'l)¥]

d(k- 2)
• j = 0, i, ..., k-2.

(5-70)

The next input to reach the saturation limit, as c(N-k) increases, is
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o
u (N-l), at the point

c(N-k) = e (k'l)_ + e (k'21_

and at this point,

When

ue(N-k@ 11 = e -(k-2)_

c(N-k) >i e (k-l)_ + e (k-21_

Equation (3-10) gives

ue(N) = ue(N-l) = I .

This process is continued until

k-i

c(N-k) = _, ei_ .

i=0

ck(J) = e (k-l)
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d(k- 2) , (5-71)

(5-72)

d(k- 21 . (5-73)

(5-74)

(5-75)

c(N-k) = ck(J), then ue(N-k + 11 = e -(k-j1_ . (5-77)

If ue(N-k + i) is plotted as a function of c(N-k), a piecewise linear

curve results. Figure 75 gives an example of this plot for N = 3 and

k = 3, 2, I, for the case e = 2.

45-76)

where d(0) = I. When

In general let the values of c(N-k) at which the input members

ue(N), ue(N-l), ..., ue(N-k + 2), ue(N-k + i) first attain the saturation

limit be denoted ck(J) , j = i, 2, ..., k. Then ck(Jl is given by,

+ e (k-2)_ + ... + e (k'j+l)_ + e-(k-j1_ d(k - j),
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The plots of ue(N-k + I), as a function of c(N-k), k = N, N-I, ...,

I, are used as the time-varying gains in the closed controller. The

controller operates upon the state c(0) in _N with the piecewise linear

gain for k = N and feeds ue(1) directly into the zero order hold. One

sampling period later, the gain for k = N-I acts upon the state c(1),

giving ue(2), and so on until the regulation is complete.

The case _k < 0. This corresponds to an unstable first order

plant. Since u°(1), as shown in Figure 70, page 191, is the first

input to saturate, the energy optimum solution is much simpler to

calculate than that for the previous case, _ > 0. Suppose k of the

original N sampling periods remain to complete the regulation.

(3-3) gives

Equation

u°(N-k + I) = c(N-k)/d(k- i) , (5-78)

so that if

2k_
I - e

, (5-79)c(N-k) >f d(k- I) =

ue(N-k + i) = I . 45-80)

As k decreases from k = N to k = I, the slope of u°(N-k + I), as a

function of c(N-k), decreases to unity slope at k = i. The initial

inputs, ue(1), ue(2), ... are therefore larger than the later inputs, as

opposed to the case _k> O. For _k < 0, the state is trying to move

away from the origin, so the controller applies its main effort at

once, whereas for 2k > 0, the state is drifting toward the origin of its

I
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-rf c(O)own accord, so the controller is rarely using its full effort.

is such that, for _ <0,

i
c(O) _ , (5-81)

l + e

Equation (4-15) shows that the plant is out of control, and no amplitude

constrained input sequence can bring the state back to the origin.

The case2k= 0. This case has the solution, from Equation (5-63),

u°(N-k + i) = ue(N-k + i) = c(N-k)/k . (5-82)

The implementation in closed loop form is then exactly the same as the

configurations shown in Figure 70, page 191, for the case _ = 0.

Figure 70 shows how to implement the controller for the minimum fuel

input sequence, but when _k= 0, the input sequences for minimum energy

and minimum fuel are identical. Note that the time-varying gain in

Figure 70, and Equation (5-42), is apparently different from that of

Equation (5-82), but, in this latter case, k takes on the values N,

N-l, ..., I sequentially, whereas in Equation (5-42), k increases from

0 to N-I.

Second Order S_stems

The closed loop control for second order systems is considered

only for two cases: plants with tuned complex poles, and plants with

integration.

Plants with tuned complex poles. Suppose N-k sampling periods

have elapsed since the regulation process started, so that only k

I
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sampling periods remain to complete the task of bringing the state to

I
I
I

the origin. Equation 45-10) shows that the next input, u(N-k + i),

depends only on the first component, Cl(N-k), of the state c(N-k). Thus

c,(N-k) = u(N-k+ i) +
J.

k

u(N-k + j) (-l) (J-l)[2e(J-l)aT •

j=3

j odd

I

I

(5-78)

The closed loop control is obtained by comparison with the known

closed loop control of a first order system. Consider Equation (4-48),

I

I

which gives the deadbeat constraint for a plant of the form

I

_p(S) = s + 2a

as,

(5-79)

I
I

i
I

I

I

I

I

k

c = u(1) + _> i u(j)e(J'l)2aT " (5-80)

j=2

The index j in Equation 45-80) runs from j = 2 up to j = k. In order

to make a direct comparison of the two deadbeat constraints of Equations

45-78) and (5-80), let the upper limit in Equation (5-80) be m, where

{ _ if k is even

m = _ . (5-81)

k 2 1 if k is odd

The first order plant deadbeat constraint of Equation (5-80) becomes

m

c = u(1) + I u(j)e (j'l)2aT . (5-82)

j---2

I
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Equation (5-82) corresponds to the deadbeat constraint of the plant of

i

I

Equation (5-79) when m sampling periods are allowed for the regulation.

The points c (j), j = I, 2, ..., m, for the closed loop graphical
m

solution of ue(1), are, from Equation (5-76),

Cm(J ) = o(m-l)'_ + + e(m-j+l)'_ + o (m-j)_ d(m-j) ,

I _ ..*

where Y = 2aT. When

I c = Cm(J) , then ue(1) = e -(m-j)_ .

(5-83)

(5-84)

I

I

I

1
I

The differences between Equations (5-78) and (5-82), the different

notation and the alternating signs of the input members, do not prevent

Equations (5-83) and (5-84) from giving ue(N-k + i) as a function of

2aT

ci(N-k ). For example, suppose e = e ffi2. Figure 75, page 203,

shows the input sequence ue(N-k + I) for the first order system of

Equation (5-79), when N = 3 and k = 3, 2, i. These same plots may be

used for the second order plant with tuned complex poles, given by

Equations (5-8) and (5-9) as,

I
I

Gp(S) ffi Is _ I[ _ ] , (5-85)+a+j-_--_ s+a- j_--_

I

I

when N is either five or six. The closed loop controller, therefore,

uses the function corresponding to k = 3 for two sampling periods if

N = 6, or one sampling period if N = 5. This piecewise linear gain is

I

I

then changed to the function corresponding to k ffi2 for the next two

sampling periods. Finally, the unit gain gives the last two inputs,

e
u (5) and ue(6) if N = 6, or ue(4) and ue(5) if N = 5.

I

I
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The cases a = 0 and a < 0 may be solved in exactly the same

manner. The time-varying gains have the same form as the corresponding

first order system of Equation (5-79).

Plants with integration.

plants of the form_

i

Gp_S)r = s(s + _)

I

Gp(S) = -_
S

be derived by considering the sets _ and _k' k = N, N-I, ..., 2.can

It will be shown that the implementation of the true optimum closed

loop controller would not be a practical proposition. However, the

consideration of the optimum controller leads directly to a practical

subopt imum controller.

The closed loop control of second order

(5-86)

(5-87)

A. True optimum closed loop control. The requirements for the

optimum closed loop controller will be considered for the plant I/s 2.

The controller requirements for the plant of Equation (5-86) are quite

similar. Figure 76 shows the sets _3 and _ for the plant

Cp(S) =-"_i • (5-88)
s

The set _ is shown as the dashed parallelogram. Because of symmetry,

only intital states with c2 _0 need be considered. Suppose, with

N = 3, the initial state !(O) lies in _. Then ue(1) = u°(1). If _(0)

lies such that u°(1) > I, the conditions of Theorem 3 always being

I
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u°(1) = -i
\

\

\

\

u°(1) = o

\

\

\
\

c2

0

.- u°(3) = 1
s

\

\

\
\

\

cI

u°(1) = -I

Figure 76. The sets _3 and _ for the plant l/s 2 showing how to

obtain ue(1) in a closed loop manner.
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satisfied,

ue(1) = sgn. u°(1) = 1 .

In the cross-hatched region, u°(3) <-i, so that

ue(3) = sgn" u°(3) -- -i .

Setting ue(3) = 1 gives the new deadbeat constraint as

__(o) -_3 = u(1) hl + u(2) h2 •

Equation (5-91) gives ue(1) and ue(2) uniquely.

210

(5-89)

(5-9o)

(5-91)

e
The closed loop procedure to obtain u (i) for N = 3 is therefore

as follows. If the state lies in the cross-hatched region, ue(1) is

the horizontal distance of the state from the line ac shown in Figure

76. If the state does not lie in the cross-hatched region, it follows

that

ue(1) = sat. u°(1) , (5-92)

where u°(1) is obtained in the usual closed loop form, as a linear

vector gain operating on _(0). The vector gain is the first row of the

matrix [I + HHt] "I, where,

Graphically, u°(1) is the length of the projection of the state _(0)

onto the line ob, divided by the distance bd. The dashed arrows in

Figure 76 show the directions of projection, perpendicular to the line

ob. The line ob is simply the line u°(1) = 0.

Even for N = 3, the implementation of the closed loop controller

would be a difficult task, since the choice of feedback gain would depend
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on whether the state was in the cross-hatched region or not. It is

found, by a procedure similar to that for the case N = 3, that when

N = 4, the number of regions where the projection is different increases

from two to three. In each region a different feedback would be

necessary. The problem of implementation is not particularly that of

implementing the different feedback gains, but rather the difficulty of

which gain is to be used. Figure 77 shows the sets _, _Adeciding

and M4 for the plant I/s 2. The different slopes of the cross-hatched

differentiate the regions where the feedback strategy is different. The

lines onto which the state is projected are shown as the dashed lines

in Figure 77.

In general, for the plant of Equation (5-88), if the settling

time is to be N sampling periods, the state must be identified as lying

in one of N regions before the appropriate feedback can be selected.

This would be quite impractical to implement.

B. SuboRtimum closed loop control. Figures 76 and 77 show that

the regions in the sets _3 and _4' bounded respectively by the lines

u°(3) = + I and u°(4) = + i, constitute the major portion of these sets.

This is also true of the plant of Equation (5-86). It is therefore

suggested that the feedback be given by Equation (5-92) for al!l initial

states.

This feedback is implemented by the controller configuration of

Figure 78. The time-varying gains, _(j), j = I, 2, ..., N, are the same

as those used in the linear minimum energy controller:
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u°(1) = -I

\

u°(1) = 1
u°(4) = 1

/
c 2

'_ h 1

\
\

\
\

\

\
\

\
\

\

c 1

=-1

77. The regions in E where thg closed loop controllerFigure

requires different stategies for the_plant i/s _.
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_.f(j + 1) =
i1 j + 111

2(j + 1

= --rl CC t -i

where

and

[r r ] -1f(j) = e I' r2' "''' ' j = N-n, ..., N ,

where e is the i x n row vector given by

e = [I, 0, ..., 0] .
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, j = O, i, ..., N-n-I ,

(5-94)

(5-95)

(5-96)

(5-97)

VIII. CLOSED LOOP CONTROL FOR MINIMUM

FUEL WITH INPUT SATURATION

First Order Systems

The open loop control of the first order minimum fuel system with

input saturation is discussed in Chapter IV. Figure 53, page 138,

illustrates a graphical method of obtaining the optimum input sequence.

The first order plant being given by,

I s+_Gp(S) =

I consider the three cases, _k_ 0, _k < 0, and _k = 0.

I
I

I

I

(5°98)

The case _> 0. Suppose (N-k)T seconds have elapsed since the

controller generated uf(1) from c(0) at time t = 0. In order that the

controller be able to take the state c(N-k) into the origin in the

i
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I remaining kT seconds, c(N-k) must lie in
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_k; i.e., from (4-8),Equation

I

I

k

Ic(N-k)l _ I e (j'I)_T

J=O

(5-99)

Assuming Equation (5-99) is satisfied, the closed loop control is given,

I

I
I

I

compare Figure 53, page 138, as follows. If

k

Ic(N'k)l _ I e(J-l)_T '

J=l

note the lower index, j = I, on the summation, then

uf(N-k + I) = 0 .

If, assuming without loss of generality than c(N-k) > 0,

(5-100)

(S-t01)

I

I
l

I

(5-toz)

j=l j=0

then,

uf(N-k + i) = sat.[c(N-k) -

k

j=l

(5-103)

The case _< 0. In this case, the longest invariant vector is

_i' so that, for all k, k = N, N-l, ..., I, the closed loop control is

given as,

I f
u (N-k + i) = sat. c(N-k) . (5-104)

I
I

I

The case _k= 0. Since the invariant vectors in this case are all

of unit length, there are an infinite number of optimum input sequences,

f
and therefore controllers, which can give _ . The simplest closed loop

controller is the one which obeys Equation (5-104).
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The implementation of the controllers. The implementation of

the controllers is very straightforward if _._ O. Equation (5-104)

implies that the state c(N-k), k = N, N-I, ..., i, is fed directly into

a fixed saturation nonlinearity, with unit gain over its linear region.

The output of this nonlinearity is then fed directly into the sample-

hold device.

When _k > 0 the controller can be imagined as a variable dead

zone, whose input is the plant state. The dead zone would be symmetrical,

and the amount of dead zone would depend on the amount of time remaining

For example, when 0 _ t <T, the dead zone, z(0), isfor regulation.

given by

N N

e(J-l)_T ..< z(0) _ I e(j-l) _T

j=l j=l

(5-io5)

In general, for (N-k + I)T 7> t _. (N-k)T, the dead zone, z(N-k), is

given by

k k

I e(J-l)7_T ._ z(N-k) _ _ e (j-l)pkT

j=l j=l

(5-106)

Figure 79 shows the controller configuration for the cases _> 0

and _40.

Second Ozder Systems

Second order systems with tuned complex poles. This case has

already been discussed in Chapter IV. The controller configurations

!
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I Zero

= Order _--_T_

I u f (t) Hold

!

I

I

/
zCk}

time-varying deadzone

a. The case _,> 0

c(N-k)

plant

state

I

I
I
I

I

I
I

uf(t)

Zero

Order

Hold

w

T

f
i c(N-k)

plant

state

b. The case _._0

Figure 79. The optimum closed loop controller configurations for

first order systems with minimum fuel consumption.
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are exactly the same as those shown in Figure 79. In the case of a pl_t

corresponding to _k>0, each dead zone is retained for two sampling

periods, except perhaps at the start of the regulation, when, if N is

odd, the first dead zone, z(0), is changed after only one sampling

period. Figure 66, page 169, gives an example of the dead zone non-

linearity when the settling time is given as either five or six sampling

periods.

Second order systems with integration. For plants of the form

of Equations (5-86) and (5-87), the closed loop control is obtained by

generalizing Equation (4-37). If the state c(N-k) is in the set Qk'

k = N, N-I, ..., 2,

f
u (N-k+ i) = 0 . (5-107)

If c(N-k) is in _k' but not in Qk' then

f (5-108)
u (N-k + I) = sat. _ ,

where _ is the smallest number in absolute value such that c(N-k) - _ h I

lies on Qk" The sets Qk are not unique for plants with integration,

however, the simplest controller configuration is obtained when Qk is

constructed as follows. In _ -space, let the set Qk" for c2(N-k) > 0,

be the line joining the set of points:

k-2

hk' hk + he-l' hk + hk-2' "''' I --_-J " (5-109)

j=0

For c2(N-k) < 0, the set Qk is defined by syn_netry. Figure 64, page

165, for example, shows the sets Q4 and Q3 for the plant I/s 2. The
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closed loop controller therefore requires the use of time-varying piece-

wise linear gains. Figure 80 shows the actual configuration of the

optimum controller. Over the last two sampling periods the gain remains

fixed corresponding to the set Q2' so that the saturation nonlinearity

only receives the cI component of the plant state.

General second order systems. If the sequence of sets, _,

QN-I" "''' Q2 can be found, see Chapter IV, page 161, the optimum closed

loop controller in general would need to use two time-varying piecewise

linear gains in the configuration of Figure 73, page 197. The same logic

would also be necessary and would be followed by a saturation nonlinearity.
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SUMMARY AND CONCLUSIONS

One common approach to the problem of designing control systems

uses the analog computer to simulate the plant. By a process of intuition

and experiment a controller may be designed which meets certain general

specifications on the performance of the overall system. While this

approach is frequently quite successful, it basically tailors the con-

troller to suit existing hardware and techniques of analysis. Consequently,

when the controller has been constructed and evaluated, there is often

no clear indication as to how it might be further improved. While the

results of theoretical analyses, with their accompanying simplifications

and somewhat arbitrary performance criteria, may not be directly applicable

to real systems, in some cases sufficiently realistic cost functions can

be mathematically formulated and the theoretically optimum input sequence

defined. Any optimum controller which results from the theoretical

analysis may then be judged by balancing such factors as cost and reli-

ability against the economic advantages of attaining an optimum system.

The discrete regulator is assuming an important role with the

increasing tendency of modern systems to use digital techniques. The

discrete deadbeat regulator, designed to minimize the energy and fuel

cost functions, has taken on a new practical significance with the

sophisticated requirements for the guidance and control of space vehicles.

Although the problem of finding the optimum bounded input sequence which
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minimizes these two cost functions can be formally solved by using non-

linear and linear programming techniques, such methods are intrinsically

unable to suggest either improvements to existing control systems, or

novel and simpler hardware to implement the optimum sequence. It has

therefore been the aim of this research to make an investigation of the

characteristics of the optimum input sequence, so that the controller

could be designed around the input sequence, rather than the sequence

around the controller.

I. SUMMARY OF THE APPROACHES USED

AND THE RESULTS OBTAINED

When the plant is driven by the output of a zero order hold, its

equation of motion can be conveniently described by a first order vector

difference equation. In order to avoid having to choose a particular

state space in which to represent the plant and its state, an alternate

space, the canonical vector space ( _ -space) has been defined.

Formulating the discrete deadbeat regulation in _-space, via the

invariant vectors, has the advantage that the properties of the input

sequence need only be considered with reference to the poles of the

plant transfer function.

The linear minimum energy and minimum fuel problems were discussed

in Chapter II, and the corresponding cases with input saturation in

Chapters III and IV respectively. Chapter V was mainly concerned with

the implementation of the optimum control in closed loop form.
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Summary of the Minimum Ener_y Problem

The linear minimum energy input sequence was found, for the

general n-th order plant, by using only elementary differential calculus.

The generalized energy cost function, which, by a suitable choice of the

N x N matrix S, gives deadbeat control and allows the system response

to be adjusted to meet various time domain specifications, was obtained

by a simple extension of the ordinary energy cost function. The minimum

energy control sequence for second order systems was also found by

graphical techniques, using a geometrical interpretation of the optimum

sequence. The open loop generation of the control requires the inversion

of an n x n matrix. The closed loop implementation uses linear time

varying feedback gains in the controller configuration of Figure 68,

page 183.

When the saturation constraint is included, the problem of finding

the optimum control is considerably more complicated. However, if the

initial state, _, lies in the set _, the linear energy equations

o
furnish a solution, _ , which satisfies the saturation constraint. The

set _ may be obtained graphically if the order of the plant is not

greater than two. If _ is not in _, but is in the set _N' it has been

shown that the solution to the minimum energy regulator with input

saturation amounts to finding which members of the input sequence are

o

equal to the saturation limit. If only one member of _ exceeds the

saturation limit, then Theorem 2, page 103, guarantees that the corre-

e .
sponding member of u is equal to the limit. If more than one member

i



I

I

I

i

I

I

I

I

I

i

I

I

I
I

I
I

I

224

o
of _ exceeds the saturation limit, Theorem 3, page 120, can be used to

find which of these are to be set equal to the saturation limit. Theorem

3 has two conditions which must be satisfied before a particular member

may be set equal to the limit. However, the second condition, Equations

(3-106) and (3-i07), is, in general, quite difficult to test. It was

therefore suggested that a practical open loop method for finding the

constrained optimum sequence would be to use Postulate la, page 114,

as the basis of a step by step procedure. This procedure first requires

o o
the calculation of the linear sequence u . If any members of u exceed

the saturation limit, Postulate la, or Theorem 2 if applicable, is

applied to find which of these members are to be set equal to the

saturation limit. Having set these members at their appropriate limits_

a new deadbeat constraint results, for which a new linear optimum

sequence, containing correspondingly fewer members, is calculated.

Postulate la is then applied again if necessary. Eventually, one of

two possibilities will occur. A linear optimum solution may be obtained

each of whose members satisfies the saturation constraint. In this

case the problem has been solved. It is possible, however, that with

no more than n invariant vectors remaining to represent the latest state,

there is no constrained input sequence which satisfies the corresponding

deadbeat constraint. The step by step procedure has therefore erroneously

set one or more of the input members at the saturation limit. It has

been shown that, in general, the technique can guarantee an optimum

solution only for first order systems, or for second order systems
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having either tuned complex poles or integration, where, if any members

of the linear sequence exceed the saturation limit, they are all to be

set equal to the saturation limit.

The closed loop implementation was shown to require the use of

a piecewise linear time-varying gain feeding a saturation nonlinearity,

when the plant is of the first order, or of the second order with tuned

complex poles. Second order systems with integration were shown to

require a very complex closed loop controller. A relatively simple

suboptimum controller, using only the time-varying linear gains of

the linear minimum energy feedback to feed the saturation nonlinearity,

was suggested and is shown in Figure 78, page 213.

Summary of the Minimum Fuel Problem

The linear minimum fuel problem is approached by considering the

initial state in relation to the set SN(f ). For the general n-th order

plant, this set is used to divide the state space into a finite number

of cones. Once the state has been identified as belonging to a

particular cone, the optimum sequence is easily obtained (22). The

considerations involved in finding a suitable cone which contains the

initial state are, in general, very involved, and have precluded in-

vestigation of any system higher than second order. First and second

order systems were considered in detail. Theorem i, page 44, gives the

necessary and sufficient conditions for the uniqueness of the fuel

optimum input sequence, and was utilized to investigate what combinations

of plant poles and initial state give a nonunique optimum control. Open
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loop solutions for first order plants or second order plants with either

integration or tuned complex poles are particularly simple. Other

second order plants require only that the set SN(f ) be constructed.

The hardware required for the closed loop control of the linear minimum

fuel regulator varies in complexity. For first order systems it may

be only simple direct feedback, see Figure 70, page 191, while a general

second order system requires a pair of linear time-varying gains

providing inputs to a small logic unit. Figure 73, page 197, shows the

configuration of this controller.

Open loop solutions to the minimum fuel problem with input

saturation were obtained for first order systems and second order

systems with tuned complex poles. It was shown that, in general, the

closed loop approach is more appropriate for dealing with the saturation

problem. The method suggested involves the generation of the sets Qk*

k = N, N-l, ..., 3, and these sets were obtained for second order systems

with integration. More general second order systems were not investi-

gated beyond the case N = 4. The closed loop controllers developed for

first order systems are shown in Figure 79, page 217. Second order

systems with integration were shown to require the use of a piecewise linear

time-varying gain, followed by a saturation nonlinearity. Figure 80,

page 220, shows the configuration. If the appropriate sets Qk can be

found, more general second order systems would incorporate two such

gains followed by the logic unit and the saturation nonlinearity.
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FOR FURTHER RESEARCH
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It has been shown that for first order systems and a somewhat

restricted class of second order systems, practically feasible optimum

closed loop controllers can be ob_a .... d, which could not have been

obtained by using classical techniques. It was shown that if the poles

of a second order underdamped plant can be tuned, by adjusting either

the poles or the sampling period, the construction of energy and fuel

optimum controllers is considerably simplified. The time-varying gain

so frequently necessary would, in some cases, be a fairly costly item

to produce, especially if N is large. It would therefore be of con-

siderable value to be able to find one suboptimum time-invariant gain

which could be used as a substitute. Since the closed loop feedback

for deadbeat control is always constant over the last n sampling periods,

the resulting linear region of control around the origin will prevent

the possibility of limit-cycling, even if the plant is subject to large

disturbances during the regulation process. Closed loop control for

unstable plants is much simpler than that for stable plants, since the

invariant vector _i is always the longest.

On a theoretical note, the approaches used are of some interest

in themselves.

The partitioning of the input sequence allowed the linear minimum

energy solution to be derived in a simple manner, and, by enabling the

case n = 2 and N = 4 to be studied in detail, provided a very useful

method of studying the various facets of the saturation problem.
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The extension to third and higher order systems presents for-

midable problems. Open loop procedures seem to offer more promise for

the minimum energy problem, while closed loop methods, with the obvious

exception of linear programming, seen more appropriate for the minimum

fuel problem. The simplifications obtained when the plant has integra-

tion may continue when the higher order system has integration.

Similarly, the possibility of tuning two or more pairs of complex poles

exists.

Time-varying plants offer no additional theoretical obstacles:

The minimum fuel and energy problems are mathematically unchanged, so

that the same techniques are applicable.
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APPENDIX A

SAMPLED-DATA SYSTEMS AND THE INVARIA_T VECTORS

I. INTRODUCTION

The Appendix begins with a discussion of the plant and its

response to pulse-amplitude-modulated control signals, following which

the discrete deadbeat regulator problem is formulated in terms of the

canonical vectors. Whether or not there is a solution to the problem

depends on the controllability of the plant, and the necessary conditions

for the existence of a solution in terms of the controllability of

the plant are given. When considering control sequences that are

limited in amplitude, additional information is needed. The informa-

tion is considered in terms of the set _N"

The regulator problem can be clarified and its solution

simplified if the formulation with the canonical vectors is replaced

by a formulation using the invariant vectors. These vectors are

introduced and tabulated for first and second order plants. Finally

the regulator problem is reformulated with these invariant vectors,

the problem being considered in the canonical space rather than the

state space.

II. THE PLANT

The n-th order linear plant is described by the matrix

differential equation,

236
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_x(t) = A x(t) + d u(t) . (A-l)

The plant output c(t) shown in Figure 3, page 5, is a linear corn-

bination of the state variables.

equation is

x(t) = G(t- to) X(to) +

The solution of this differential

t

r
J
t
O

G(t - _)du( 15 )d_ , t 79 t
0

In general• for the time invariant plant, t
O

The transition matrix, G(t), may be found by several methods.

convenient formula is,

where I is the n x n identity matrix and

Laplace transformation.

(A-2)

may be taken to be zero.

One

(A-3)

L-I denotes the inverse

Consider the case when the plant is subjected to pulse-amplitude-

modulated inputs (8, 9, I0). Suppose

Then

u(t) = u(1) = constant, 0 < t < T .

where

x(t) ffiG(t) x(0) + u(1) h(t)

(A-4)

• (A-5)

t t

h(t) = f Get -13 )d dT_ -- f G( -c')d d'G' • (A-6)
.b

O O

After T seconds the solution is

xCT) : G(T) x(0) + u(i) h(T) (A-7)
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After (k + I)T seconds the solution is

x(k + IT) = G(T) _(kT) + u(k + i) h(T)

238

(_s)

_here u(k + !) is a constant input over kT < t < (k + i)T as sho_n in

Figure I, page 2. Some useful properties of G(t) and h(t) are given

below. Letting tI and t2 be arbitrary real numbers and k be an

integer,

and

G(0) = _

_h(0)= 0 ,

G(tI + t2) = G(tl)G(t2)

G-l(tl) = G(-ti) ,

G-k(tl) = G(-ktl) ,

(A-9)

(A-t0)

(A-1i)

(A-!2)

(A-13)

h(t I + t2) = G(tl)h(t2) + h(tl> _ (A-14)

Beginning _ith the initial state x(0) and using _.,_u_.-_+-_,_n(,_-o)'_'

repeatedly gives

/(I) = G(r)i(0 ) + u(1)h(T) ,

x(2) = G(r)x(1) + u(2)h(T) ,

= G(2T)x(O) + u(1)g(r)h(T) + u(2)h(T) ,

where x(k) = x(kT) for notational convenience. Finally,

N

x(N) = G(NT)x(O) + u(j.G(N - jT)h(r)_

j=l

(A-16)

(A-17)

Equation (A-17) gives the solution to Equation (A-l) when the input is

i
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of the form of Figure i, page 2. The solution at instants of time

other than t = kT, k = i, 2, ... can be found (5, 6), but such consid-

erations will not be needed.

Ill. THE DEADBEAT REGULATOR

The deadbeat regulator requires that _(N) = 0. The condition

for _(N) = 0 can be obtained by premultiplying Equation (A-17) by

Then with the use of Equations (A-9), (A-II) and (A-13), thereG(-NT).

results

N

x(0) = >. -G(-jT)h(T)u(j) . (A-18)

j=l

The canonical vectors rj, j = i, 2, ... , are defined as (7)

r. = -G(-jT)h(T) .
--3

With the use of Equation (A-14),

r. = h(-jT)-h(-(j - l)r) .
--J

(A-19)

(A-Z0)

From Equation (A-i8) a necessary and sufficient condition (i,

23, 25) that the state of the plant can be brought to the origin in N

sampling periods by the input sequence u(1), u(2), ..., u(N), is that

the initial state x(0) be given by

N

x(0) = _ ' u(j) r. . (A-21)
-- _.j --J

j=l

Equation (A-21) is fundamental to the deadbeat regulator problem.
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Controllability

Pulse-amplitude-modulated plants described by the difference

equation, Equation (A-8), are defined to be completely controllable if

and only if the set of vectors _i" _2' "''' _ are linearly independent.

Complete controllability is a necessary condition for there to

be a solution to the deadbeat regulator problem. For the linear case,

when there is no saturation constraint on the input sequence, complete

controllability is also a sufficient condition. If any n of the set

of canonical vectors _j, j = I, 2, ..., N are linearly independent,

they can be used as a basis for the state space. It then follows from

Equation (A-21) that for any initial state _(0) there is an input

sequence u(1), ..., u(N) which makes _(N) = 0. In the continuous case

the plant described by Equation (A-l) is completely controllable if

An-l!and only if the vectors _, A_, ..., are linearly independent (I).

Usually the introduction of the sample-hold device between the input

and the plant leaves the discrete plant of Equation (A-8) completely

controllable. If the plant has complex poles however, it is possible

for the continuous plant to be completely controllable and for the

discrete plant not to be completely controllable. It has been shown

(I, 2) that the discrete plant remains completely controllable if and

only if, for every eigenvalue _ of A,

T ] 2_kwhenever Ira. _i - _j _-_-- '

(A-22)

where k is a positive integer. For example, if only one pair of complex

Re. _. = Re. _, then
i j
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2poles occurs in the continuous system, so that _ I = a + jb,

a - jb are the only complex eigenvalues of A, the plant remains

completely controllable if and only if

Dr _ k_ . (A-23)

For second order systems this can be illustrated geometrically. From

Equation (A-20),

r I = h(-T) ,

r 2 = h(-2T) - h(-r) . (A-24)

Figure 81 shows h(-t) plotted for a typical second order system with

complex poles. The figure illustrates that if T = _/b, r I and r 2 are

not linearly independent. It can be shown further that, in fact_ all

the canonical vectors lie in the same direction.

The Set PN

Consider the set of all initial states that can be taken into

the origin in one sampling period. This set is found by setting

x(1) = 0 in Equation (A-15), which gives

x(0) = r I u(1) . (A-25)

If u(1) is unrestricted, all the states on the line u(1)r I can be

brought into the origin in one sampling period. If lu(1)l _ I, only

states lying along the vector r I or -r I can be brought into the origin

in one sampling period. Similarly the set of all states that can be

taken to the origin in two sampling periods or less, is the set of all

states that can be taken to the state u(2)r I in one sampling period.
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x2

h(-t)

t --

b

(-2T)

t increasing

Loss of controllability is possible with sampling.
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In general, the set of all states _(0) that can be taken into the origin

in N sampling periods or less, with lu(j) i _ i, j = I, 2, ..., N, is

given by the set IN:

"''" N 1 "
2,

(A-26)

Figure 82 shows the method of generating the set _3 for a second order

I

I
I

I
I
I

I

I

system.

The following properties of PN can be shown (14, 23, 24, 25):

i. rN is a convex set and contains the origin as an interior

.

3.

4.

point.

_N is with to thesymmetric respect origin.

r is a proper subset of I . for J > i.
l 3

For T > 0,

a. Lira. _= = _ if and only if Re [_i]_0, i =i,.
N

N-_

b.

2, ..., n.

Lira. _N = _ if and only if IA*Ii ..< I, i = I,
N-_ =_

2, .o., no

Here _ I' _ 2" "''" An are the eigenvalues of A (the poles of the

continuous plant), _* _* _* are the eigenvalues of G(T)and
I' 2' "''' n

the system, continuous and discrete, is completely controllable.

If an initial state _(0) is in the set _N then the state may

he taken to the origin in N sampling periods or less with an amplitude
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limited input sequence. Conversely, if for a given N, _(0) is not

PN there is no solution to the (deadbeat regulator) problem of

making _(N) = 0.
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The Invariant Vectors

The canonical vectors r. are dependent on the coordinate system
--]

of the state space; i.e., they depend on the particular choice of the

state variables Xl, ..., Xn. Since the state of the plant must be

referred to some coordinate system, the regulator problem would seem

to depend on the choice of state variables. On the other hand, the

optimal input sequence must remain the same no matter what coordinate

system is chosen to represent the state of the plant. If the initial

state is described not by the canonical vectors, hut by the invariant

vectors discussed below, the regulator problem formulation becomes

independent of the choice of state variables.

matrix R be defined as

and define the invariant vectors _j, j = i, 2, ..., as

-i
h. = R r. . (A-28)
--3 --]

It will be shown that the invariant vectors hi, j = I, 2, ..., are

dependent only on the poles of the plant; i.e., the characteristic

equation of the matrix A. It will, therefore, follow immediately that:

i. The invariant vectors are independent of the coordinate

system of the state space.

Let the n x n nonsingular

I
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2. The invariant vectors are independent of the zeroes of the

transfer function.

It is now demonstrated that the invariant vectors are dependent only

!

!

on the poles of the plant.

Consider a plant with distinct poles,

s ffi- A i, i = I, 2, ..., n,

i and represented by the transfer function,

m

7-[ (s+ --i}

U(s) = n , m < n .

_-_ (S + A i)

I i=l

!

(A-29)

Since the poles are distinct, the transfer function can be expanded

into partial fractions giving,

!

! with

C(s) = I Xi(s ) = di s + A i U(s) ,

i=l i=l

(A-30)

m d.i U(s) .
Xi(s) = s + Xi

(A-31)

!

!

For a completely controllable plant, di _ O, i = i, 2, ..., n.

Choosing x. as state variables, leads to the state equation,
l

x(t) = A x(t) + d u(t) , (A-32)

I where

A = diag.(- ,_i, - Am, "''' - An )

I d = col.(dl, d2, ..., dn) .

(A-33)

(A-34)

!

!
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I From Equation (A-3) and Equation (A-6),

I GCT) = diag. [e" _IT - _2 T " _n T1 e'

e , ., e j (A-35)

I

I

I

I

I

I

I

Let

d. - hiT_.=- _0 _ ) _.=
1 _ _ I

hit , i = i, 2, ..., n

Therefore

h(T) = col°(-k I, -k 2, ---, "kn) •

-_i e'_2, e'_n ][
G(T) = diag. Le , ---,

g

The canonical vectors given by Equation (A-19) are

r. = -G(-jT) h(T), j = i, 2, ...,
--3

J n

[kloJik2o_2 o ]= col. , , ..-, k n

(A-37)

(A-38)

(A-39)

(A-40)

(A-41)

I

I

I
I

I

Then the matrix R is given by

R

_i 2 _i

kle kle

_2 z_2
k2e k2e

_n
ke
tl

24
n

ke
n

kle

n_ 2

k2e

n_
n

ke
n

(A-42)

I

I
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* -i

Let ri_J be the i,j-th element of R ,

i,j-th element of R;

and R.. the cofactor of the
lj

R°o

* _!/
rij IR{

= (-1) i+j
k.

]

3

_l (i-l) _1 (i+1)¥ 1
• . . e e

ex j-I (i-l)_ j-I (i+l) _ j-i
e e

e _ j+l . . . e(i-1)Y j+l e(i+l) gj+l

• t •

n (i-l) _ n (i+l) _ n
e e _. e

(A-43)

n¥
1

n"_ j.]

ngj+l

n_ n

_1 n_[
e o••••••,••e

gn ng n
e ,•.•••••o.e

(A-44)

Let h . be the i-th component of h
pl --p

r . From Equation (A-28),
-p

n

1"hpi = rij rpj .

j=l

and r . be the j-th component of
P3

(A-45)
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Let the n x n matrix V be given by

V

°

e_l n_l
• • • • • • --

• •

n_ n"_n

• (A-46)

then if V.. is the cofactor of the i,j-th element of V, Equation (A-45)
i]

gives

p_

n kje J I n PI y. - J
Vii ,--> Vije . (A-47)

hpi = :-Wjfl kj = iv--']"j=l

From Equation (A-47), for j ffiI, 2, ...•

h°

--j

YI 2_I n_l
e e , . . e

_2 2_2 n_2
e e . . . e

_n 2 X n n _n
e e . . . e

J _21
e

J "_nl
e

Equation (A-48) is a general formula for obtaining the invariant

(A-48)

vectors• It shows that h. is dependent only on _I' "''' _n' which--j

in turn depend only on the poles of the plant and the sampling "period•

The matrix V in Equation (A-48) is closely related to the Vandermonde

matrix (5). If the plant has repeated roots• V has rows which are

I
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equal and the inverse of V does not exist• This is simply because the

partial fraction expansion of the plant of Equation (A-30) does not

exist if the poles are not distinct. However, the invariant vectors

can be obtained for repeated roots from Equation (A-48) by first

inverting the matrixp thus forming the expression for h. and then

taking the limit as the poles move to the same point. An example of

this procedure can be seen in the following paragraphs.

For reference purposes the invariant vectors are calculated for

first and second order systems.

First order systems. From Equation (A-48) with _ ffi_T,

h. = e (j.l)_ , j = I, 2, ....
--3

(A-49)

Second order systems. From Equation (A-48),

h°

--3 _2 E1
e - e

I (j-l)"_2+ _l

- e

(j-l) _ 2
e

-" ](j-l)_ 1
- e

For notational convenience define

• (A-50)

(j-t)_ 2 (j-l)"d1
= e - e , j = i, 23 ...

wj _2 _l
e -- e

(A-S1)

By long division there results,

J (j-i)_2+i_i
w_+ 2 = _ e , j = I, 2, 000

i=0

(A-52)

with w I = 0, w 2 = I. Using Equation (A-52), Equation (A-50) gives



I
I

I
I

I

I
I

I
I
I
I

t

I
I
I

I
l

and

hi+ 2 =

wj+2

Wy+l

, j = I, 2, ..., (A-53)
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[:II°J_h1 = , _h2 = . (A-54)
1

Table I shows the invariant vectors for various second order

systems.

In the general n-th order plant, it can be seen from Equation

(A-48) that the first n invariant vectors are always unit vectors:

h. = col.( Sj .., gjj ., _jn ) (A-55)--j I• - • .. .

It is this fact that is so useful when the minimum energy and minimum

fuel sequences are calculated.

The Canonical Space

A fundamental equation inthe deadbeat regulator is Equation

N

_x(0) = I u(j) £j . (A-56)

j=l

(A-21) ,

The initial state _(0) in

only if it can be represented by Equation (A-56) for some N.

Equation (A-56) is premultiplied by R-1,

can be bought to the origin, if and

If

I
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N

R-l--x(0) = I u(j) hj . (A-57}

j=l

Let

= R-I_(0) . (A-58)

Reserving the symbol _ for the original state space of the plant with

coordinates Xl, x2, ..., Xn, it is convenient to call R-I _ the

canonical vector space or just _ -space. For any state _ in _ ,

there is a corresponding _ in d given by Equation (A-58). Let Cl, ...,

c be the coordinates of _ -space. Then Equation (A-56) in _ -space
n

is

N

c = I u(j) hj . (A-59)

j=l

Considering c in _ as the state of the plant, the representation of

Equation (A-59) is independent of the choice of the state variables,

and the properties of the minimum energy and fuel input sequences can

be described without reference to any coordinate system since they

depend only on the poles of the plant. The matrix R contains all the

information on the state space and the zeros of the plant. The

formulation of Equation (A-59) is fortunate for another reason: the

derivation of the optimal input sequences with this formulation is much

simpler compared with the calculations that would be needed if Equation

(A-56) were used. This results from the fact that the first n

invariant vectors form the columns of the n x n identity matrix (see

Chapter II).
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As an example of the relation between _ -space and _ -

space, the set PN in C -space is

.i:1

(A-60)

Figure 83 shows _3 for a second order system in both _ and C -
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APPENDIX B

DERIVATION OF EQUATION (3-87) AND THE PROOF OF THEOREM 3

I. M POINT OF TANGE_Y BEIWEEN

A HYPERELLIPS01D AND A R_PERPLANE

Let the equation of the hyperellipsoid, Equation (3-51), be

_t [I + HtH]_ = _E , (B-l)

and let the hyperplane be given by

Z _ = z , (B-2)

where the (N-n) x n matrix H is given in Equation (2-17) as

(e-3)

The matrix Z is assumed to be an r x (N-n) matrix of maximal rank r,

r <(N-n), and _ an r x i constant vector. Let the (N-n) x (N-n) matrix

Y be defined as

Y = [I + HtH] . (B-4)

The point of tangency between the hyperellipsoid of Equation (B-I) and

the (N-n-r)-dimensional hyperplane of Equation (B-2) is the _ which

minimizes

_ty_ subject to Zt _ = _ • (B-5)

Since Y is a positive definite matrix, the solution to this problem is

O

given by Equation (2-45) with u replaced by _, S replaced by Y, C

replaced by Z and _(0) replaced by _. Therefore, the point of tangency

256
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I

!

I

!

_-__[_-__]-_= z . (B-6)

Suppose r = i, and Z is given by one of the following N possibilities:

Z = Zj = - pj, j = I, 2, ..., n, (B-7)

or, for j = n+l, n+2, ..., N,

z =z_= [_+_ j, _+_ j, ..., _. j] (___)

where _j is the j-th row of H, as defined in Equation (3-56) and _ ij

is the Kronecker delta. If the i x (N-n) matrix Zj, given by Equations

(B-7) and (B-8), is substituted into Equation (B-2), and _ is replaced

by _(j), the resulting (N-n-l)-dimensional hyperplane

i Zj _ = _(j) (B-9)

corresponds to the hyperplane W. if g(j) = -u°(j) + i, and to the

S
I hyperplane W_j if (j) = -u°(j) - I. In this case Equation (B-6)

becomes, on replacing _ by _j,!

_J zj_'_z]
(B-tO)

I

I
I

I
I

In accordance with Equation (3-47), let

, (B-11)

where, from Equation (3-54), _j ffi-H _j. Therefore, Equations (B-10)

and (B-II) give the N-vector __j. The last N - n members, _j, come
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I
l
l
l

l
l

I
l

I

l
l

I
I

l
l

from Equation (B-10) and the first n members from --]5"= -H _Bj:

I

-3 Z. y-i Z.
3 3

_(J)
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(B-12)

II. DERIVATION OF EQUATION (3-87)

Equation (3-87) is

_ ij - Tij
j(i) = 1 - T.. (J)

.].]
t",

w_r_8j_> i_ t_ei-_ m_r o_=_j' i,j = I, 2, ..., N, and

(B-13)

Tij = u°(i, hj) , i,j = 1, 2, ...,N, (B-Z4)

o
is the i-th member of the linear minimum energy input sequence, u , for

an initial state c = h..

Matrix Identities

Let the n x n matrix X be defined as

x=[_+_]
Equations (2-25), (2-27), (2-28) and (2-29) are respectively,

b° ffiHt a° ,

o X-I= _ _

b ° H t X -I= c

b o y-1 Ht= c

(s-15)

(B-16)

(_-17)

(B-Z8)

(B-Z9)
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u° = (3-2o)

is the linear minimum energy input sequence corresponding to the initial

state c. From Equations (3-18) and (3-19),

H t X-I = y-I Ht . (3-21)

Let I denote the identity matrix. Then

y-i Y = I = y-I [I + HtH] = y-i + y-i HtH • (3-22)

XX'I = I = [I+ HHt]X -I = X-1 + m_ t x "I . (3-23)

Postmultiplying and premultiplying Equation (3-21) by H gives

H t X -I H = y-I Ht H , (3-24)

HH t X -I = H y-I Ht . (3-25)

Therefore, Equation (3-22) with Equation (3-24) gives

I = y-i + Ht X-i H , (3-26)

and Equation (3-23) with Equation (B-25) gives

I = X -I + H y-i H t . (3-27)

Evaluation of -H y-I Z_, j = I, 2, ..., N

From Equation (B-7),

"''" n = - £1' P2' "''' _n = " (3-28)

Therefore, Equation (3-27) gives

!
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l

l

I

I

I

I

l

I

I

l

I

I

I

I

l

l

_,_-_[_;,_;, z_]=_.x-_"'"• n

Now from Equation (B-8) •

n+l' "''" = 'H y-I I ,

so that the transpose of Equation (B-21) gives

Z t
-H Y-I [ n+l" "''" _] = -x'l H "

Therefore• Equations (B-29) and (B-31) give

_[z_ _] [_x-_x_]oee• • •

Equation (B-17) gives, with c = hi, j = i, 2, ..., N,

a°(hj) = X "I h. .
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(B-29)

(B-30)

(B-31)

(B-32)

(B-33)

Therefore, the i,j-th element of-H y-i [Zl, 4]..., , i = I, 2, ..., n,

j = I, 2, ..., N, which is the i-th member of -H y,l Z_, is

_ij - n°(i' hi) . (B-34)

(_-35)

Using Equation (B-21)

(B-36)

(B-37)

y-i t
Evaluation of Z_, j = i, 2, ..., N

t -I I]Y'I [ZI, ..., _ ] = Y [-Ht,

where I is the (N-n) x (N-n) identity matrix.

ZI, ---, =

gives

Equation (B-26) gives

_H t X-1 y-l] .

y-i = I - H t X -I H ,

m
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so that, using Equations (B-16) and (B-33),

y-i Zl ' ---,

=[_o_>,.,_o_>,__[_o_>._o_>]]
Therefore, the i-th element of y-i Z_, i = I, 2) ..., N-n, is

(B-38)

_n+i j - u°(n + i, hj) (B-39)

The matrix of Equation (B-12) is therefore,

Z. y-i zt
J J

where e. = col.
--3

evaluate Z. y-i
t

Z.o
] J

i

_ _-__.[___uO%>]
J J

(B-4o)

[_jl" "''' _]j' "''" _jN]' It therefore remains to

From Equations (B-29) and (B-28),

Z !

y-I H t y-l[ t t zt ]
= H = hZl" Z2' "''' n J ' (B-41)

Z2

Z
n

ZI y-i t Z1 -ZI . . . y i Zt
n

• i
Z g-I t y-I Zt
n ZI " " " Zn n

(B-42

Therefore, from Equations (B-33) and (B-35),
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Z y-I zt. = I - u°(j,
J J hj) ,

j = l, 2, ..., n. (B-43)

Equation (t_-38) gives

zj _-! zj_= I- u°(j, hj) , j =n+l, ..., N. (B-44)

Finally therefore, Equations (B-40), (B-43) and (B-44) give

I

zj y-i ztJ

-H y-I Zt
3

- _ _j)ej u° (h

i - u°(j, hi)

(B-45)

Therefore, with Equation (B-14), there results from Equations (B-12)

and (B-45),

g ij " _ij _ (j)
j(i) ffi 1 - T..

33

, (B-46)

which is the desired form of Equation (B-13).

Useful Properties of T..
z3

Since L[I+ H11tJ-I is a positive definite symmetric matrix, a

matrix D can be found such that

Dt D [i + Hilt]-I= . (B-47)

Define the n-vector n. as
--3

_j = D _j, j = i, 2, ..., N .
(B-48)

Then

t h_ Dtn. n. = D h. , (B-49)
--z --3 --z --3

which from Equation (B-16) gives
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t
n. n. = T.. . (B-50)
--z --3 13

Consider an initial state c = h.. One possible input sequence which

brings c to the origin is u(j) = -i, u(i) = 0, i _ j. This input
i

sequence has an energy E = i. The minimum energy consumption is_ from

Equation (2-39),

= tE ° h _. D t D h. = n. n. = T..
--3 --3 --J --J 33

(B-51)

but 0 < E °_ E = i. Therefore,

0 <rjj _.< i, j = i, 2, ..., N . (B-52)

If E is in FN, and if for any j, j = i, 2, ..., N, u°(j; 2) > I, then

0 _ E ° < i, and therefore

0 < Tjj <i, j = I, 2, ..., N. (B-53)

From the Schwartz inequality,

Therefore,

ITiji_. I_ i_j = I, 2, ..., N .
i &

t t

Finally, since n i n. = nj n.,--3 --i

Tij _ji' isj = i, 2, ..., N.

(_-5s)

(B-56)

This result is helpful when applying Theorem 3, since only the values

of Tij , i,j in J_ i _ j, need be to be used. Note further, that Tij ,

i_j _ n_ can _ found as the elements of the matrix r[I + HHtJ _ , and

the elements of the matrix [I + HtH] -i

Tijs
i,j >in+l. corr6spcnd to

L J
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Statement of Theorem 3

loss of generality assume that u°(1) > !.

f_ _ ij - Tij
_j(i) = I - T.. (J)

]J

where _(j) = sgn. u°(j) - u°(j) from Equation (3-91).

Theorem 3 applies to initial states _.cin the set FN but not in

_hesetofallj forwhichiu°(j)l> 1 definesthesetJ. Witho.t

_. is given by

-3

Then from Equation (3-87)

(B,57)

The N-vector

oj(1)
C"

__j= • • (B-58)

o (N)

Theorem 3 states that

e

u (I) = i (B-59)

if, for all j in J,

u°(1) + _(1) > i
3

(B-6o)

and _' = _ - hi is in the set

j=2
lu(j)l < i, j = 2, 3, ..., N }.

(B-61)
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Proof of Theorem 3

This proof is based on the work of Stubberud and Swiger (36, page

405). The correction _e must lie on the boundary of UN_n, so that for

at least one j in J, _e(j) = sgn. u°(j) - u°(j). From Equation (]3-50),

[_e _ ] has a first component,the vector _j + _ _ - j

_(1) = _j(1)+ _ [_e(1) - _j(1)] (B-62)

equal to _ (I) = i - u°(1) for some value of p, and has an energy

correction cost less than or equal to that of _ e. But since c' is in

_Ni I , this value of _ gives the corresponding vector _e in UN_ n.

o u eTherefore e(1) = 1 - u , and (1) = 1.
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APPENDIX C

SYMBOLISM

Only frequently recurring symbols are included below: the meaning

of any other notation should be apparent from the accompanying text.

The underscoring of a symbol represents vector notation; the subscripted

symbol without underscoring represents the components of the corresponding

vector. The letters i, J, k, m, and p always represent either an integer

or zero, while _ and _ are used as arbitrary constants. Capital roman

letters usually represent matrices or particular sets: the exception

being when A, B, C, A-, B-- and C-- are used to denote general regions of

interest in the figures. The symbol 0 is used to represent the corre-

sponding scalar, vector or matrix, the particular use in the text is

apparent.

I. LIST OF SYMBOLS

SYMBOL MEANING

a

o
a

b

The n-vector, consisting of the first n members of the

input sequence, with components al, a2, ..., a n-

The n-_ector of the first n members of the linear energy

o O O

optimum input sequence, with components al, a2, ..o, an.

The (N-n)-vector of the last (N-n) input sequence members,

o O o

with components bl, b2, ..., bN. n.
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I
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I
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I

I

SYMBOL

c

Ck(J)

d

e °

--.1

e

f

f

h.
--1

4

n

P

Pj

r°

--j
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MEANING

The state of the plant in _ -space, with components
c I •

c2, ..., c .n

Points in a one-dimensional _ -space, defined by Equation

(5-76), page 202.

The forcing vector of the continuous plant, with components

dl, d2, ..., d .n

The I x N matrix, [_jl' gj2' *''' _jj' "''' _jN] "

The base for natural logarithms.

A vector feedback function.

A particular fuel consumption, or a scalar feedback

function.

Forcing vector of the discrete plant.

The j-th invariant vector, defined in Equation (A-28),

page 245, with components hjl , hj2 , ..o, hjn.

The length (Euclidean norm) of the j-th invariant vector,

defined in Equation (2-46), page 24.

The order of the plant.

Number of members of the set k.

A I x N matrix, the j-th row of the matrix H, defined in

Equation (3-56), page 94.

The j-th canonical vector, defined in Equation (A-19),

page 239, with compqnents rjl , rj2 , ..., rjn.

Laplace transform variable.

I
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l
I

I
I

I
l
I

I
I

l
I

I
I

l

S_OL

t

U

O
U

e
u

f
U

u(t)

x(t)

x(k)

u°(i,hj)

A

|

A

A
n

!

A
n

B

BN_ n

C

c(s)
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MEANING

The transpose of a matrix or the time.

l_e N-vector representing the discrete plant input

sequence.

The linear minimum energy input sequence.

The constrained minimum energy input sequence.

The constrained minimum fuel input sequence.

The plant input.

The plant state vector, an n-vector, with components

xl(t), x2(t), ..._ Xn(t)-

The state vector at time t = kT.

The i-th member of u° when the initial state is c = h..

The set, in M-space, of all a whose members satisfy

Equation (4-21), page 142.

The map of A in _ -space.

The set in K _space_ composed of all the _ that satisfy

Equation (3-52), page 92.

The map of An in _ -space.

A set, in _ -space, of all _ whose members satisfy

Equation (4-22), page 142.

A set_ in _ -space, composed of all the _ that satisfy

Equation (3-53), page 92.

The n x N matrix of the first N canonical vectors, r..
--j

Laplace transform of plant output.
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SYMBOL

C (+__i,+_j)

C s (+_i,+_j)

E

E °

Ee

F

q

FN

G(T)

Gp (s)

H

I

J

K
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MEAN_G

The cone in _ -space generated by the line L(!i,!j) ,

see page 31.

The cone in _-space generated by the line Ls(!i,!j) ,

see page 40.

The energy cost, defined in Equation (1-6), page 9.

o
The energy cost associated with u .

e
The energy cost associated with u .

The fuel cost, defined in Equation (1-7), page 9.

The fuel cost associated with _, defined by Equation

(4-25), page 143.

The fuel cost associated with b, defined by Equation

(4-26), page 143.

The set of all initial states, _, whose linear minimum

fuel sequence satisfies th= saturation constraint.

The n x n state transition matrix, see page 237.

The transfer function of the continuous plant.

The n x (N-n) matrix whose columns are the last N-n

invariant vectors. The i,j-th element of H is the i-th

component of the (n + j)-th invariant vector, hi, hji.

The identity matrix of the same order as the matrix with

which it may be associated.

_e_ o__n_e_or_j_orw_ lu°(j>l> _
The set of integers k, for which _k lies on _SN(f ).
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SYMBOL

L(i,j)

L (i,j)
S

N

q

Qk

R

s(j)

T

T° °

1j

270

The set, in -space, of all o satisfying Equation

(3-31), page 84.

The line _ _i + (i - _) hi, 0 _ _ _ I, joining any pair

of points h. and h. in a two-dimensional _ -space.
--i --j

The line _ --lh"+ (i - B) hi, 0 _ _ _ i, i,j in K, in a two-

-space, and which belongs to _SN(i ) .dimensional

The set, in _ -space, of all initial states whose linear

minimum energy input sequence satisfies the saturation

constraints, defined by Equation (3-26), page 80.

The number of sampling periods for the deadbeat control.

The n x (N-n) matrix whose columns are the last (N-n)

canonical vectors defined in Equation (2-9), page 19.

A polygonal region in _ -space, which, for k = N,

N-I, ..., i, defines the feedback required for the

solution of the constrained minimum fuel problem.

The n x n matrix whose columns are the first n canonical

vectors, _j, defined in Equation (2-8), page 19.

Notation convenient in describing the invariant vectors

for second order plants with integration, defined in

Table I, page 252.

The sampling period of the discrete regulator system.

An alternate notation for u°(i,hj), i,j = i, 2, ..., N.

I
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I SYMBOL

I Sk(f )

!
U

!

I u(s)

W

| ±J
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MEANING

The set, in _ -space, of all initial states which can

be taken to the origin in k sampling periods or less

with a fuel consumption F _ f.

The set, in _ -space, defined by the intersection of the

I

sets B and A .

The set, in _ -space, defined by the intersection of the

!

sets BN_ n and A .

The Laplace transform of u(t).

The (N-n)-dimensional hyperplanes defined by Equations

(3-73) and (3-74), page i01.

i w+(n+j)

! x
g

| z.
3

!

!
e

!

The (N-n)-dimensional hyperplanes defined by Equations

(3-71) and (3-72), page I00.

_ oxn=_r_x[_+_].
[ t "1

The (N-n) x (N-n) matrix [I + H Hj

The i x (N-n) row vector defined by Equations (B-7) and

(B-8), page 256.

The n x I correction vector, formed as the first n

components of _ .

The optimum correction, which, when added to o gives

e
the first n members of u .

An (N-n) x I correction vector, formed from the last

I (N-n) components of __.

!

!

_e b °An optimum correction, which, when added to _ , gives

e
the last (N-n) members of u .

!
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SYMBOL

t_f

J_+j

1

e

_f

_ij

_SN(f)

e.
1

-Ni,-X

"5

--i

v.
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b°An optimum correction, which, when added to _ _ gives the

f
last (N-n) members of u .

The point of tangency of the hyperellipsoid with the

hyperplane W_j.

Scalar constant, given by _. = _.T.
1 l

Scalar constant, given by _ = _T.

An N x 1 correction vector with components _(1), ...,

_(N) •

The optimum correction for the constrained minimum energy

input sequence.

The optimum correction for the constrained minimum fuel

input sequence.

The correction corresponding to the point of tangency

_(
of the hyperel!ipsoid ,-,_ the _'- _...... _jper_a.e j) = con-

stant, with components _j(1), _j(2), ..., _j(N).

The Kronecker delta, defined by Equation (2-82), page 42.

The boundary of the set SN(f ).

The N-n eigenvalues of the matrix [I + HtHJ .

The poles of the continuous plant.

A dummy variable.

The eigenvectors of the matrix [I + HtH ] .

The set of all initial states that can be taken to the

origin with an amplitude constrained input sequence.
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SYMBOL

_N cont.

_-space

-space

-space

-space

C_ -space

-space

_-space
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MEANING

In _ -space, the set is defined by either Equation

(3-27), page 80, or Equation (A-60), page 254. In

_-space the set is defined by Equation (A-26), page

243.

The set of all states that can be taken to the origin of

-space when only k (not necessarily the first k) of

the invariant vectors are available to represent the

state.
6"

The energy cost associated with a correctionS_ , see page

89.

A line in two-dimensional d -space.

The n-dimensional space with coordinates al, a2, .... , a..n

o o O

The n-dimensional space with coordinates al, a2, ..., an .

The (N-n)-dimensional space with coordinaues bl, b2, ...,

bN-n"

The n-dimensional space with coordinates Cl, c2, ..., Cn.

The n-dimensional space with coordinates 51, 52, ..., _n"

The (N-n)-dimensional space with coordinates _i' _2' "'''

The n-dimensional statespace with coordinates Xl, x2, ...,

X •

n

I
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SYMBOL

sat.

= B; C 1

II. MATHEMATICAL NOTATION
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MEANING

The determinant of a square matrix A.

The magnitude of a scalar _.

I if _ >I

-I if _ < -I

i if _ >/0
if 0_<0

The set A is defined as the set of all x given

by _ = B, subject to C.

J


